Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Lunga Luthuli | Photo Supplied
Gift of the Givers Donation to the UFS
Staff of the University of the Free State and the Gift of the Givers Foundation on the Bloemfontein Campus holding food packs as a donation to the No Student Hungry Programme.

“It is very hard for some students to make it through tertiary institutions, with most not only having to focus on studies but also having to worry about where their next meal will come from,” said Hlengiwe Nkwanyana, Community Liaison Officer of the Gift of the Givers Foundation.

She shared this when the foundation delivered food parcels on the University of the Free State (UFS) Bloemfontein Campus on 29 June 2022, as part of a partnership that started in 2020.

Nkwanyana said: “Some students at most tertiary institutions come from disadvantaged backgrounds and with the high unemployment rate, there is less support coming from families. The foundation is glad to assist, especially in alleviating poverty.”

The partnership started on the Qwaqwa Campus and has since expanded to all campuses. UFS students who successfully applied for support receive nutritional food parcels from the foundation on a monthly basis.

Annelize Visagie, Senior Officer in the Food Environment Office within the Division of Student Affairs, said the UFS has noted an ever-increasing number of students needing support. The donation from the foundation will see our students “having enough food for the third quarter”.

Visagie said: “This is part of the UFS Food Environment Strategy and the donation will be distributed to students on all three UFS campuses. We have a crisis on our hands; I call on all organisations and individuals who are able to support us to please do so.”

“Students go hungry and need our support, especially during the examination period. Without the support from foundations like the Gift of the Givers Foundation, the UFS would not have been able to sustain the support needed by the students,” said Visagie.

Nkwanyana said the Gift of the Givers Foundation “understands the plight of students, and the COVID-19 pandemic has taught us to support each other in times of need, irrespective of race or colour”.

 Nkwanyana said: “The foundation is proud to partner with the University of the Free State, because we know all the donated parcels will go to deserving students. All students need to worry about now, is ensuring they pass their studies.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept