Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 July 2022 | Story Dr Nitha Ramnath | Photo Supplied
Leah Molatseli.


Leah Molatseli– alumna and Council member of the University of the Free State (UFS) – is the first African woman to be recognised by the American Bar Association in its list of Women of Legal Tech for her contribution and influence in the legal tech industry. A commitment to diversity is one of the core values of the American Bar Association, which the Law Practice Division aims to reinforce in the legal tech sector. Annually, talented women in the legal tech space are recognised for making an impact on legal tech.

A lawyer by profession, published legal tech author and speaker, as well as legal tech and innovation specialist, Molatseli uses technology and innovative means to empower and educate law professionals.  She is currently head of business development at Legal Interact, a South African law firm that provides technology solutions for the legal industry. 

Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, congratulated Molatseli on her achievement. “On behalf of the executive committee of the University of the Free State (UFS) and the university community, I would like to extend my warmest congratulations on being recognised by the American Bar Association for your contribution to the legal tech industry. Being the first African woman to be honoured in this way makes this accomplishment even more extraordinary. You are a trailblazer in your field in so many ways,” said Prof Petersen. 

Prof Petersen said, “The university, and the Faculty of Law in particular, is proud to be associated with you. We also appreciate your continued support to the institution. Your dedication and expertise inspire us all – I will continue to follow your professional journey, because I know there is much more in store”. Prof Petersen continued to thank Molatseli for contributing to the legal field in an innovative and contemporary manner. 

Molatseli is host of and guest speaker for various legal tech talks globally, as well as a guest lecturer at the University of Cape Town, where she develops and teaches legal tech innovation-related courses to the legal industry. A Mandela Washington fellow, as well as a Notre Dame alumna, she is a member of the Women in Tech South African Chapter, a country member for the Global Legal Tech Consortium, and is one of 2022’s ILTA’s Most Influential Women in Legal Tech honourees.  


News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept