Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 July 2022 | Story Dr Nitha Ramnath | Photo Supplied
Leah Molatseli.


Leah Molatseli– alumna and Council member of the University of the Free State (UFS) – is the first African woman to be recognised by the American Bar Association in its list of Women of Legal Tech for her contribution and influence in the legal tech industry. A commitment to diversity is one of the core values of the American Bar Association, which the Law Practice Division aims to reinforce in the legal tech sector. Annually, talented women in the legal tech space are recognised for making an impact on legal tech.

A lawyer by profession, published legal tech author and speaker, as well as legal tech and innovation specialist, Molatseli uses technology and innovative means to empower and educate law professionals.  She is currently head of business development at Legal Interact, a South African law firm that provides technology solutions for the legal industry. 

Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, congratulated Molatseli on her achievement. “On behalf of the executive committee of the University of the Free State (UFS) and the university community, I would like to extend my warmest congratulations on being recognised by the American Bar Association for your contribution to the legal tech industry. Being the first African woman to be honoured in this way makes this accomplishment even more extraordinary. You are a trailblazer in your field in so many ways,” said Prof Petersen. 

Prof Petersen said, “The university, and the Faculty of Law in particular, is proud to be associated with you. We also appreciate your continued support to the institution. Your dedication and expertise inspire us all – I will continue to follow your professional journey, because I know there is much more in store”. Prof Petersen continued to thank Molatseli for contributing to the legal field in an innovative and contemporary manner. 

Molatseli is host of and guest speaker for various legal tech talks globally, as well as a guest lecturer at the University of Cape Town, where she develops and teaches legal tech innovation-related courses to the legal industry. A Mandela Washington fellow, as well as a Notre Dame alumna, she is a member of the Women in Tech South African Chapter, a country member for the Global Legal Tech Consortium, and is one of 2022’s ILTA’s Most Influential Women in Legal Tech honourees.  


News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept