Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Out-of-the-box thinking a plus for next generation of agribusiness leaders
2017-07-07

Description: Agribusiness leaders Tags: Agribusiness leaders 

The winners of the 12th IFAMA International Student
Case Competition from Team South Africa are from
the left: JW Swanepoel, University of the Free State,
Melissa van der Merwe, University of Pretoria,
Heinrich Jantjies, Stellenbosch University, and
Johann Boonzaaier, also from Stellenbosch University.
Photo: Supplied



The International Food and Agribusiness Management Association’s International Student Case Competition, in its 12th year, brings together students from around the world to demonstrate their investigative and problem-solving skills to provide innovative solutions to practical problems.

JW Swanepoel, a PhD student at the Centre for Sustainable Agriculture at the University of the Free State (UFS) was part of an advanced case study team, representing South African universities, who won IFAMA’s International Student Case Competition. Swanepoel also presented results from his PhD study at IFAMA’s conference in Miami, Florida, where the winners were announced.

Competition a global stage to showcase solutions

The competition provides a global stage for students and their associated universities to showcase the next generation of agribusiness leaders.

This year the featured agribusiness was Bayer Crop Science. Although this company managed to expand its global footprint through its Food Chain Partnership, it faced some challenges to expand in emerging economies through small-scale farmers. Being from the African continent, Swanepoel and his team not only understood Bayer’s unique challenge but could also pre-empt some of the potential problems faced by agribusinesses that wanted to grow their footprint in emerging economies. This provided them with a competitive advantage in going head-to-head with some of the best universities in the world such as Purdue, Wageningen, Michigan, Texas A & M and Santa Clara to mention just a few.

The South African team’s presentation “Selling Lindiwe’s story” told the story of a small-scale woman cassava farmer in Mozambique who, after the death of her husband, became the main breadwinner. The South African team indicated how Bayer could play a major role in not only selling chemicals to these farmers but even more importantly to change the stories of small-scale farmers like Lindiwe. They recommended a strategic partnership with AB InBev as the main buyer for the cassava produced by these small-scale farmers, as a cheaper beer base substitute. They also recommended a local partner (Value Chain Insights) that understood the political, social and economic environment of these countries to facilitate the relationships between Bayer and its small-scale farmers.

Understanding the challenge a competitive advantage

According to the panel of judges, the innovative approach and motivations for investing in strategic partnerships with AB InBev and Value Chain Insights went beyond financial benefits, to include corporate social responsibility and rural development. Lindiwe’s story was, however, the decisive factor. The South African team was the only team to put a face and a story to the often invisible small-scale farmers.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept