Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Wildlife researcher in ground-breaking global research on giraffes
2017-10-20

Description: Giraffe read more Tags: giraffe, conservation, Dr Francois Deacon, Last of the Long Necks, Catching Giants 

Dr Deacon from the Department of Animal, Wildlife and Grassland
Sciences at the University of the Free State (UFS),
lead a multispecialist research group to catch
and collar giraffe to collect data that will
contribute to the conservation of these animals.
Photo: Prof Nico Smith


Capturing 51 giraffes without any injuries or mortalities to collect data that will contribute to the conservation of these animals is not for everyone. Capturing a giraffe with minimum risk to the animal and the people involved, requires extraordinary skill, planning, and teamwork. “This exercise is a dangerous task, since a well-placed kick from these large and extremely powerful animals can cause serious injuries. Early in October was the first time that giraffes were captured on such a large scale,” said wildlife researcher Dr Francois Deacon.
 
Dr Deacon from the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), led a multispecialist research group of over 30 people from 10 different countries to collect information about these little-known animals.

UFS first to collar giraffe
Taking a global approach, the team responsible for this intricate process consisted of wildlife biologists, conservationists, interdisciplinary scientists and five specialist veterinarians who are experienced in catching and working with wild animals. Specialised drugs sponsored by Dr Kobus Raath from Wildlife Pharmaceuticals, tested for the first time and administered with a dart gun were used to tranquillise the giraffe, which then allowed for the GPS collars to be fitted.  These collars, sponsored by Africa Wildlife Tracking, enable the researchers to record the location of individual giraffe for up to two years, give 24/7 readings, irrespective of weather conditions. In this cost-effective manner, data can be gathered on climatic factors, giraffe communication, social behaviour, home ranges, seasonal movements, human and giraffe interaction zones, as well as migration routes and the duration of the migration process. The collars will effectively be used to locate individuals to collect faecal samples for hormonal cycles, stress hormones, nutrient deficiencies based on diet and also internal parasites. 

“This knowledge we gain is the key to all keys in saving this iconic animal from becoming extinct,” said Dr Deacon.

Six years ago, during a pilot study, Dr Deacon was the first researcher to fit giraffes with a GPS collar. Collaring is less invasive and allows researchers to collect detailed samples. Not only was extensive knowledge and experience gained during the process, but he also initiated interest from the filmmaker and conservationist, Ashley Scott Davison, executive producer of Iniosante Inc. 

Getting to tell the story

Davison, who was doing research for a film on giraffe learnt about the silent extinction of the species. In a great number of countries giraffe numbers have been declining by as much as 40% over only a few years since 2000. Today West Africa has between 400 to 600 giraffe left while four out of five giraffes were lost in East Africa since 2000. This is a considerable decline in numbers and poses a real threat to the survival of the species in the longer term. At the end of 2016, the giraffe was classified as vulnerable on the International Union for Conservation of Nature Red Data list.

According to Davison, children in school learn about the destruction caused by ivory poaching and habitat loss. But in Africa today, there are six times as many elephants as there are giraffes. 

In the process to find out more about this majestic species Davison learnt of Dr Deacon’s work. After being introduced to and spending time with Dr Deacon, Davison not only describes the UFS as the leader in the conservation of giraffes but he returned to the university, three times to help build a dedicated research team to address unanswered research questions within various disciplines.

Flowing from the affiliation with the UFS is Iniosante’s award-winning production of a documentary, “Last of the Longnecks”. The film has received several awards, including official selection at the 2017 Global Peace Film Festival, the Wildlife Conservation Film Festival and the Environmental Film Festival in the US capital. 

The film team accompanied the multispecialist research team last week to gather footage for a follow-up documentary, “Catching Giants”. This film is expected to air in middle 2018.

 Video clip of the event: https://www.dropbox.com/s/d3kv9we690bwwto/giraffe_UFS_revision-01a.mp4?dl=0

Video clip of the event: RooistoelTV

Former articles on this topic:

18 Nov 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7964 
23 August 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7856 
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept