Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Art and science help us understand the world and our place in it
2017-10-28



Description: Art and science  Tags: Art and science

At the event were, from the left: Tristan Nel, first-year Fine Arts student;
Dr Janine Allen-Spies from the Department of Fine Arts;
Prof Carlien Pohl-Albertyn from the Department of Microbiology,
Biochemical and Food Biotechnology; and Pheny Mokawane, a
Microbiology, Biochemical and Food Biotechnology student.
Photo: Charl Devenish

Although BioArt dates back as far as the 15th and 16th centuries with the work of Leonardo da Vinci, it is not every day that art and science combine. This rare phenomenon made its appearance when two totally different groups of students – studying arts and microbiology respectively – joined hands in an initiative to create BioArt.

This first-time undergraduate teaching collaboration between the Departments of Fine Arts and Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), which is characterised by the use of living materials, such as enzymes, microbes and DNA, as well as scientific tools and methods, is exploring a number of questions. 

Different outcomes for arts and microbiology students

According to Prof Carlien Pohl-Albertyn from the Department of Microbiology, Biochemical and Food Biotechnology, one of the central questions explored in BioArt is the nature of ‘life’. “At which stage can matter be classified as being alive or living?” she asked. 

“We realised that the outcomes for the two groups of students would not be the same. For the microbiology students, the focus would be on the understanding and effective communication of a microbiological concept. For the art students the focus would be on the execution of the assignment using visual elements and applied theory of art,” said Prof Pohl-Albertyn.

Dr Janine Allen-Spies from the Department of Fine Arts added: “Art students will also be exploring strangely or previously unforeseen gaps between art and science that can be filled with imaginative interpretations which may forward creative insights in both BioArt as a developing art form and microbiology as investigative science.”

Students’ understanding of microbial evolution reflected in art
The art students had to visit the microbiology labs for their assignment as this is mostly a foreign environment for these students. “The paint medium they had to use was gouache. This medium with its bright colours works well to depict microscopic organisms in art,” Dr Allen-Spies said. 

On display at the Department of Microbial, Biochemical and Food Biotechnology on the Bloemfontein Campus, at a recent event to introduce this new initiative to a wider audience, was a range of visually and scientifically compelling paintings and artefacts (such as paintings, poems, songs, apps) which explore a theme within microbiology from a BioArt perspective that uses creativity to communicate concepts dealt with in the module Microbial Evolution and Diversity.

Any parties who are interested in buying the art can contact Dr Allen-Spies at allenj@ufs.ac.za.

Paintings and artefacts reflects students understanding of BioArt. At the recent opening of the BioArt exhibition at the UFS Department of Microbial, Biochemical and Food Biotechnology, was the work of Madeleen Jansen van Rensburg on display.

Pheny Mokawane, a Microbiology, Biochemical and Food Biotechnology student, wrote a poem for his BioArt project in the Microbial Evolution and Diversity assignment. 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept