Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Little ‘Devil’s Worm’ on Top 10 New Species list
2012-05-29

 

Halicephalobus mephisto (Devil’s Worm)
Photo: Supplied
29 May 2012

A minuscule little worm found and researched with the assistance of researchers at the university has made it onto the list of Top 10 New Species of the world. The list was published by the International Institute for Species Exploration (IISE) at Arizona State University and a committee of scientists from around the world. It lists the top ten new species described in 2011.

An article on the new worm species appeared in the authoritative journal Nature in June 2011.
 
Prof. Esta van Heerden, leader of the university’s research team, says, “In our wildest dreams, we could not have imagined that we would get so much reaction from the worm’s discovery. We had to do so many checks and balances to convince Nature that the worm could survive in the old and warm water. We were very excited when the article was accepted but the media reaction was unbelievable.”
 
The tiny nematode, Halicephalobus mephisto (Devil’s Worm) of about 0,5 mm in length, is the deepest-living terrestrial multi-cellular organism on earth. It was discovered in the Beatrix gold mine near Welkom at a depth of 1,3 km.
 
The IISE says in a statement the species is remarkable for surviving immense underground pressure as well as high temperatures. The borehole water where this species lives has not been in contact with the earth’s atmosphere for the last 4 000 to 6 000 years.  
 
This top-10 list includes a sneezing monkey; a beautiful, but venomous jellyfish; a fungus named after a popular TV cartoon character; a night-blooming orchid; an ancient walking cactus creature; and a tiny wasp. A vibrant poppy, a giant millipede and a blue tarantula also made it onto the list.
 
The international selection committee made its choice from more than 200 nominations. They looked for species that captured the attention because they were unusual or because they had bizarre traits. Some of the new species have interesting names.
 
Prof. Van Heerden says, “We are very thankful for the exposure that the university gets as a result of the inclusion on the list and we enjoy the international cooperation immensely.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept