Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Spotlight on Excellence in Teaching and Learning
2012-11-08

 

Dr Lynette van der Merwe and Mr Fred Mudanvanhu
Photo: Stephen Collett
08 November 2012

Dr Lynette van der Merwe from the Department of Basic Medical Sciences was announced as the winner of the Vice-Chancellor’s award for Teaching and Learning 2012. This award celebrates the excellent work done by academics in their classrooms. Mr Fred Mudanvanhu from the Computer Science and Informatics Department was named winner of the Excellence in Teaching and Learning award on the Qwaqwa Campus. They received their awards during the first Excellence in Teaching and Learning Week held on the Bloemfontein Campus from 29 October to 1 November 2012.

Hosted by the Centre for Teaching and Learning, the week was a showcase of scholarly teaching in various disciplines and innovation in teaching and learning practice. Some of the top academics at the university exhibited and presented their scholarly contributions in the form of presentations, short videos and electronic posters. This celebration of excellent work done by academics started on 24 October 2012, with the Excellence in Teaching and Learning Day on the Qwaqwa Campus.

Dr Francois Strydom, Director for the Centre for Teaching and Learning, said presentations made during Excellence in Teaching and Learning Week, especially those by the candidates for the Vice-Chancellor’s award for Teaching and Learning, demonstrated cutting edge, reflective scholarship.

He said Dr Van der Merwe’s innovative practises in teaching and learning stem from her Ph.D. research on Generation-Y learners and what their specific preferences are within the context of the Faculty of Health Sciences. “She illustrated how important it is for lecturers to reflect on the characteristics of the students that they are teaching to find the optimal balance between face-to-face interaction and the use of technology to engage the current generation.”

Mr Mudanvanhu was singled out for his research that contrasted the impact of different types of combinations of peer facilitated learning with the technology to improve students’ success.

Speaking at the teaching and learning awards function,Prof.Driekie Hay, Vice Rector:Academics, said the celebration of excellence indicates the pursuit towards developing the next generation of teachers, doctors, architects, scientists and researchers, to name a few. “The graduate that we educate today is the next president, the next Nobel prize winner or your grandchildren’s teacher.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept