Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Meet our Council Members: Derek Foster, ethical and responsible leadership role model
2016-05-18

Description: 2016 05 18 Derek Foster Tags: 2016 05 18 Derek FosterMr Derek Foster
Photo: Stephen Collett

Derek Foster was elected to the Council of the University of the Free State (UFS) in October 2012. He was the first Chartered Accountant (South Africa) to be appointed to Council because of the role he could play through his training, background, and experience. In particular, it was his knowledge of corporate governance, ethics, and reporting that led to his serving currently on the Audit and Risk Committee, the Finance Committee, and the Investment Committee of Council.

This Kovsie alumnus qualified as chartered accountant at the UFS in 1978. During his student years, he played rugby for Oud-Studente, and served in the Evening Student Representative Council.

Until December 2010, Derek was a partner in PricewaterhouseCoopers, which he joined in 1972 as a rookie when the company was still known as Meyer, Nel and Co. Nowadays, he is a business consultant and company director, serving on the boards of NWK Limited, Cancer Association of South Africa (national), and Samba Cooperative Limited.

His background and knowledge of auditing shine through strongly when it comes to the manner in which he sees his role as Council member. “The contribution which I can make to the Council of the university is to ensure that management executes strategy and policy appropriately, as formulated and approved by Council, in the best interest of the university community. Of course, this should be done in an ethical, sustainable manner, taking into account the risk environment we find ourselves in. We need to provide ethical leadership, and ensure that the UFS is a responsible corporate institution,” he says.

Work obligations are keeping him very busy, but his four grandsons are equally high on his priority list. He met his wife, Sally, at Kovsies, another reason why the university is close to his heart. “Everything I do, I want to do with enthusiasm and passion, and I want to make a difference wherever I go. I would also like to be a good grandfather, and set a memorable example to my grandchildren,” he says.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept