Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Martie Smith and Prof Drik Opperman
Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.

Flavours and fragrances have a wide application in the food, feed, cosmetic, chemical and pharmaceutical sectors. Many flavour compounds are still produced via chemical synthesis or via extraction from plant or animal sources. However, there is increasing interest in their bio-production or the use of flavour compounds of (micro) biological origin. 

One reason for this shift is that chemical synthesis often uses environmentally unfriendly processes. Chemical synthesis usually also produces racemic mixtures with the second enantiomer, mirror image of the looked-for compound, often having undesirable organoleptic properties. Furthermore, the consumer has developed a “chemophobia”-attitude towards synthetic chemical compounds, especially when related to food and home-care products.  This applies even to nature-identical compounds – products that occur in nature but are produced via a non-natural chemical process. Products produced with the use of enzymes or microbes from “natural” substrates can be labelled “natural”. The flavour and fragrance industry thus pay higher prices for such products labelled as “natural”.  

The invention

A University of the Free State (UFS) team, led by Prof Martie Smit and Prof Dirk Opperman in the Department of Microbiology and Biochemistry are conducting exciting research in this area. They filed a patent entitled “Process for the chemical modification of alkanes, fatty acids and fatty alcohols”.  

The invention relates to a process for the enzymatic in-chain hydroxylation of C12 to C16 fatty acids, alcohols, and alkanes. Hydroxylation of C12 fatty acid and alcohol provides routes for the synthesis of “natural” δ-dodecalactone. The advantage of these routes is that they do not rely on massoia lactones. Massoia lactones are derived from the bark of Massoia trees which grow in Indonesia. Harvesting of the bark kills the trees.  

The cytochrome P450 enzymes (P450s) claimed in this patent are to the inventors’ knowledge the most regioselective enzymes described thus far that can be used for the synthesis of δ-dodecalactone from lauric acid or 1-dodecanol. The approach that the technology takes is to claim cytochrome P450 enzymes that share 70 % amino acid identity to a set of selected P450s for the regioselective hydroxylation of lauric acid and 1-dodecanol to synthesise δ-dodecalactone.

Still in early stage

The current state of development is early stage with the technology only demonstrated in the laboratory on a small scale (100-200 ml). Before the technology can be commercialised the team would need to further improve the regioselectivity and stability of the P450s and proof that the reactions can be scaled up in bioreactors. The technology will probably be delivered as an enzyme (amino acid sequence) with the desired properties. 

There are other research groups working on a synthetic biology approach for the de novo synthesis of δ-dodecalactone from glucose by genetically engineered microbes. It is still unclear how such a process will compare in terms of product yields, economics and environmental impact with the processes proposed by the UFS patent.

If the team had to partner with a commercial company, their first choice would be to work with an established flavour and fragrance company. Another possibility would be the small French flavour and fragrance company that Dr Alizé Pennec, the post-doc and co-inventor who initially discovered the unique P450 activity, is working for.

Please view the videos for more information on patents.

The Vice-Rector: Research and Internationalisation has released two new calls for applications for funding. Academic staff and researchers are encouraged to submit applications for these funds. At this stage we are not accepting projects from Research Fellows. 

The two funds are: 

1.  The Industrial Engagement Fund 
2.  The Intellectual Property Commercialisation Fund

Each fund has its own guidelines and application process. The guidelines are attached. The applications must be filled in on RIMS.

The RIMS application forms can be found through this link

For more information please click the documents below:



News Archive

Department of Chemistry moves into world-class facilities
2008-05-16

 

Attending the opening of the first and second phases of the Department of Chemistry's upgraded research facilities on the Main Campus of the UFS in Bloemfontein are, from the left: Prof. André Roodt, Head of the department, Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Ms Tania van Zyl, Architect from Goldblatt Yuill Architects in Bloemfontein.
Photo: Leonie Bolleurs

UFS Department of Chemistry moves into world-class facilities

The University of the Free State’s (UFS) Department of Chemistry recently moved into the first and second phases of the southern wing of the upgraded Moerdyk and annex building in which the department is situated. The wing is part an extensive project to upgrade the building and its facilities.

At a total costs of R40 million for the upgrading of the building and R30 million for the equipment, this is the biggest project of its kind in the history of the UFS.

The upgrading is taking place in four phases, of which the largest part is the southern wing. Researchers and undergraduate students recently moved into this part of the building, which consists of the first- and second-year laboratories. The laboratories consist of, among others, larger and safer venting and research-focused facilities as well as enough storage for the department’s equipment. Although one of the water-cooling systems on the roof of the building recently caught fire, all classes, practical and research work is going ahead without any disturbance.

“The putting into service of the first two phases is a milestone for the department. The project is almost half way and, when it is completed by the middle to end of 2009, we will boast with some of the best research and undergraduate laboratories in the country. It will also increase our leadership in advanced training on the continent and will strengthen the UFS’s role in the international chemistry arena,” says Prof. André Roodt, head of the department.

According to Prof. Roodt advanced research on fuel and nano particles (this is particles as big as one hundred thousandth of a human hair strand) will be conducted in the completed laboratories as part of the UFS’s research cluster initiative. Other research such as anti cancer remedies, research on various chemical processes and research on biological pharmacological remedies will also be done.

“During the past three years the department has made a significant impact on research in chemistry worldwide. Our academics are publishing in some of the world’s foremost chemistry journals and various presentations are made at international conferences. The upgraded facilities will ensure that we continue building on our high quality research and it will also ensure that our students can compete with the best in the world,” says Prof. Roodt.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept