Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 July 2022 | Story Jóhann Thormählen | Photo Supplied
Robert Summers (left) and Caden Kakora
The University of the Free State duo of Robert Summers (left) and Caden Kakora have been playing badminton together since junior level. They are part of the South African badminton team at the Commonwealth Games.

“A reflection of the commitment and hard work by all stakeholders under challenging circumstances over the past few years.”

This is how Maryka Holtzhausen, Acting Director of KovsieSport, describes the journey of sportsmen and sportswomen from the University of the Free State (UFS) taking part in the Commonwealth Games.

She says the UFS is very proud of the current and former Kovsies who will be flying their national flag at the showpiece in Birmingham, England, from 28 July 2022 until 8 August 2022.

South Africa and Lesotho represented

A total of eleven athletes and coaches with UFS ties, featuring in seven different sporting codes, will be competing at the Games.

Ten of them will represent South Africa and are part of the 251 athletes included in the final squad, while one will participate in the colours of Lesotho.

Anneke Bosch (women’s T20 cricket), Shindré-Lee Simmons (women’s hockey), Khanyisa Chawane, Lefébre Rademan (netball), Neil Powell (rugby sevens coach), Yolandi Stander (discus; athletics), Jovan van Vuuren (long jump; athletics), Robert Summers, and Caden Kakora (badminton) are all in Team South Africa.

Simmons, Rademan, Stander, Summers, and Kakora are current students, while Bosch, Chawane, Powell, and Van Vuuren are former Kovsies. Simmons also recently represented South Africa at the FIH Women’s Hockey World Cup.

The UFS triple jumper Lerato Sechele, who is the secretary of the Lesotho Athletes Commission, will represent Lesotho.

The Kovsie first-year student Elmien Viljoen (karate) will in turn be in action for South Africa at the Commonwealth Karate Championships, which takes place in Birmingham from 7 to 8 September 2022.

Power of sport

A proud Holtzhausen says their achievements also bring a future responsibility.

“It creates a sense of pride within the UFS community, but also instils a new responsibility to continue to strive for excellence and create opportunities to increase the UFS contribution on the highest levels.”

According to the former Protea netball captain, who represented South Africa in three Commonwealth Games, the power of sport is clearly visible at such an event. Holtzhausen played for her country at the 2010 Games in Delhi, in 2014 in Glasgow, and in 2018 in the Gold Coast.

“The Commonwealth Games eliminate all kinds of boundaries in South Africa, even between sporting codes. 

“It brings Team South Africa together: athletes, team officials, supporters, and spectators unite in their love and passion for sport.”


News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept