Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2022 | Story Nonkululeko Nxumalo | Photo Supplied
UFS Academic staff job shadow in Germany
From the left: Helene van der Merwe (Lecturer: Sustainable Food Systems and Development), Herkulaas Combrink (Lecturer: Economic and Management Sciences, and Interim Co-director of the Interdisciplinary Centre for Digital Futures), Prof Dirk Fornahl (Research associate/researcher at Friedrich Schiller University Jena), Dr Karen Booysen (Lecturer: Business Management), Ketshepileone Matlhoko (Junior Lecturer: Sustainable Food Systems and Development), Gretha Lotz (Technopolis intern), Prof Johan van Niekerk (HOD: Sustainable Food Systems and Development), Prof Katinka de Wet (Associate Professor: Sociology, and Interim Co-director of the Interdisciplinary Centre for Digital Futures)


A group of academic staff and PhD students from the University of the Free State (UFS) recently visited the Friedrich Schiller University Jena (FSU) in Germany for a three-week (27 May-16 June 2022) regional innovation training workshop and job shadowing. The opportunity was extended to the university’s Interdisciplinary Centre for Digital Futures (ICDF) as well as the faculties of Natural and Agricultural Sciences and Economic and Management Sciences.

Building a regional innovation cluster for agriculture

With this training, the UFS, in collaboration with the FSU, the Department of Science and Innovation (DSI), the Technology Innovation Agency (TIA), the Department of Small Business Development, Tourism and Environmental Affairs (DESTEA), the Department of Agriculture (DOA), and other industry partners, aims to build a regional innovation cluster for agriculture in the South African perspective that drives innovation, technology advancement, and trade methodology among academic institutions, the government, and industries.

“The collaboration between the UFS and the FSU will have significant benefits for both universities in terms of knowledge sharing and learning. However, the biggest benefit of this project is to build a better community, facilitate innovative solutions for future challenges, and provide academic collaborations,” said Herkulaas Combrink, Interim Co-director of the ICDF.

Another regional innovation cluster in the agricultural sector is arranged within the Cape Winelands region and is centred on wine and liquor production. The projects between the UFS and the relevant stakeholders will grow other agricultural spheres such as textiles, livestock, and diverse crop irrigation.

“We are interested in a broad topic focused on climate change in the challenging context of developmental issues, inequalities, pressing issues of food insecurity, and demands/ opportunities brought about by the Fourth Industrial Revolution,” Prof Katinka de Wet, Interim Co-director of the ICDF, highlighted.

According to Combrink, the UFS has been engaging online and in person with academic staff from FSU since 2021 to build the skills and capacity to drive this regional innovation.

“Academic institutions, government, and industry rely on these integral bridges to drive a sustainable digital future as well as to capacitate the next generation with the skills to increase the level of innovation required to remain relevant in the context of tomorrow,” he also said.



News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept