Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 July 2022 | Story Leonie Bolleurs | Photo Supplied
Riaz-Seedat
Prof Riaz Seedat, who enrolled for a PhD through the USDP, wishes to create ear, nose, and throat knowledge through his research that is more relevant to the South African setting.

Prof Riaz Seedat is Professor and Head of the Department of Otorhinolaryngology at the University of the Free State (UFS) and in the Free State Department of Health at the Universitas Academic Hospital. It is in this position where he has the opportunity to treat patients, teach students, and conduct research.

As one of the ten academics enrolled in the University Staff Development Programme (USDP), Prof Seedat forms part of the University Capacity Development Programme (UCDP), which seeks to transform academic expertise in the field of global health.

The UFS Office for International Affairs administers the programme, which offers an enriching journey for the group of academics from the University of the Free State (UFS) and the University of Venda (Univen).

In an interview, he revealed the importance of research focused on ENT cases in developing countries. 

How has your background shaped the life and academic path you have chosen? 

During my internship, I had the opportunity to work in ENT. The field sparked great interest in me, so I decided to specialise in it. 

During my training, it became apparent to me that much of the information in the literature was based on research and practices in developed countries and did not reflect the situation in developing countries, where there is a high burden of infectious diseases and presentation of patients with pathology at an advanced stage. My research has been focused on providing a developing country perspective of otorhinolaryngology, particularly with regard to infectious diseases and allergy in the field, creating ENT knowledge that is more relevant to the South African setting. 

What drew you to the USDP project’s call? 

The USDP provides me with the chance to complete my doctorate on recurrent respiratory papillomatosis, a disease that is characterised by recurrent wart-like growths on the surface of the vocal cords or tissue around the vocal cords.

In our context, this affects mostly children and there is a relatively high prevalence of this condition here in the Free State. Research through this PhD will expand knowledge on the diagnosis and management of the condition. 

Please tell us more about your research. 

I have identified that in South Africa, recurrent respiratory papillomatosis, which is caused by the human papillomavirus, occurs more commonly in children than in Europe, where mostly adults are affected. In future, I would like my research to find factors that can help to identify which patients with recurrent respiratory papillomatosis will develop more severe disease, in order to better treat them. 

I have also done work on infectious diseases such as HIV and ENT, describing the impact of HIV in the different ENT conditions we see. 

With regard to allergic rhinitis, we have studied the impact of the condition on patients’ quality of life and are identifying the most frequent allergens present in our setting here in the Free State.

Did the pandemic impact your research?

Yes, it did. Being a full-time clinician for the Free State Department of Health meant that we had to dedicate more time towards managing the pandemic. This has affected patient care and the research we do on the patients. Many patients could not access healthcare facilities because of the lockdown, impacting their treatment, as well as research being carried out. 

Global health is one of the critical issues for the future of the human species, especially in Africa, where both infectious and non-communicable diseases threaten development. What will your project contribute to the field? 

Many of the conditions I am researching are as a result of infectious diseases. Unfortunately, these are conditions that are often neglected as they occur mainly in developing countries. The research will positively impact society through the care and treatment of patients with the condition. 

What are your future career plans? How will a PhD qualification assist you in reaching these goals?

A PhD will help me obtain a better understanding of research content and methodologies. I believe that a PhD will also equip me with the knowledge to better supervise individuals who wish to further their academic careers and do their own PhDs. 

What is your advice for aspiring PhD candidates?

I would advise someone who wishes to complete a PhD to work on a topic that they have a great interest in, because it is a task that will take much of your time. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept