Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 June 2022 | Story Rulanzen Martin | Photo Sonia Small (Kaleidoscope Studios)
Dr Munyaradzi Mushonga is very optimistic about his appointment as the Global Academic Director of the Decolonial International Network.

Dr Munyaradzi Mushonga of the Centre for Gender and Africa Studies (CGAS) at the University of the Free State (UFS) has been appointed Global Academic Director of the Decolonial International Network (DIN). Dr Mushonga, who is a senior lecturer and programme director of CGAS’s Africa Studies programme, says his vision for DIN is “to work towards a new world civilisation that is opposed to the militarism and war, lawlessness and genocides of other civilisations.” 

Dr Mushonga, who is a leading voice and scholar on decolonialisation, will formally assume his role at DIN in 2023. 

The duality of new technology and scholarly work

Dr Mushonga says it is important for our minds to be decolonised, and he is therefore planning to establish a Centre for Decolonising The Mind (CDTM), which will use 21st-century technologies to achieve the ideal of decolonialisation. “Here pluriversal decolonial chapters and centres will be driven towards developing a decolonial history app,” he says. The aim is also to work towards a decolonial textbook on the history of Africa. 

He says it is commendable to employ technology to address decolonisation, but the real work to achieve the ideal of a decolonial mind lies in the scholarly work done by academics. At the CGAS the entire Africa Studies programme addresses decolonial theory and praxis through several approaches. “These are informed by our identity, which is anchored on two pillars, namely the interdisciplinary nature of all our engagements, as well as the exploration and critique of what it means to be ‘human’, but also in relation to the ‘non-human’ world.” He adds that the Centre’s teaching, supervision, and engagement with its students also challenges academics to think beyond the binaries of ‘coloniser’ and ‘colonised’, ‘white’ and ‘black’, and to reject all forms of fundamentalism. 

UFS’s commitment to decoloniality is a great asset 

Dr Mushonga's tenure at DIN will also reinforce the commitment to decolonial education made by the UFS, which has been noted by DIN. “I am convinced that DIN, the CGAS and the UFS can become the great vehicles to drive the decolonial agenda from the global South in general, and South Africa in particular,” he says. He says the commitment to the ideals of decolonisation displayed by UFS and the CGAS played a large part in his appointment to his new DIN role. 

The CGAS and the UFS will become key players in the DIN project, and Dr Mushonga hopes that more individuals and groups will come forward to join forces with DIN. “I hope this will enable DIN to push for new ethics in living.” 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept