Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2022 | Story Prof Felicity Burt, Prof Dominique Goedhals and Dr Charles Kotzé
Prof Felicity Burt, Dr Charles Kotze and Prof Dominique Goedhals
From the left; Prof Felicity Burt, Dr Charles Kotzé and Prof Dominique Goedhals.

Opinion article by Prof Felicity Burt , Prof Dominique Goedhals , Division of Virology at the University of the Free State (UFS), and Dr Charles Kotzé, National Health Laboratory Service (NHLS), Universitas Academic Hospital.
The recent COVID-19 pandemic has certainly highlighted the importance of vigilance and awareness of emerging diseases with public health implications. The monkeypox virus has recently made headlines, after the detection of more than 200 cases in geographically distinct regions. On 13 May, the World Health Organisation (WHO) was notified of human cases of the monkeypox disease occurring in the United Kingdom, outside of the known endemic region.

Exported cases have been detected previously and usually occur sporadically. In contrast, within the past two weeks, human cases have been confirmed in at least 21 countries, including various European countries, the United Kingdom, Israel, the Canary Islands, Canada and the United States, and Australia. The initial case appears to have been a traveller from Nigeria. Sequence data may help to determine if there have been multiple exportations from West Africa. 

What is monkeypox and what do we know

What is monkeypox and what do we know about the aetiologic agent? Monkeypox is the name given to a disease caused by the monkeypox virus, a zoonotic pathogen endemic in Central and West Africa and responsible for cases of the disease in the endemic region, with occasional exported cases in travellers. The virus was initially identified in 1958 in monkeys housed at a research laboratory in Denmark, and the name monkeypox was derived from the appearance of lesions and the occurrence in monkeys. The first human case was identified 52 years ago in the Democratic Republic of the Congo. Since then, human monkeypox cases have been reported in several other Central and West African countries: Cameroon, the Central African Republic, Ivory Coast, the Democratic Republic of the Congo, Gabon, Liberia, Nigeria, Republic of the Congo, and Sierra Leone. The first monkeypox outbreak outside of Africa was in the United States of America in 2003 and was linked to contact with infected prairie dogs imported as exotic pets. Since then, there have been various small, contained outbreaks outside of Africa that have mostly been linked to the importation of the virus from African countries. 

The virus is related to the smallpox virus, which was eradicated in the 1970s by vaccination. Although belonging to the same family of viruses as the smallpox virus, the disease caused by monkeypox is less severe, with fewer fatalities.   Unlike smallpox, which carries a case fatality rate of 30%, the case fatality rate in monkeypox is low (estimated at 3-6% in more recent outbreaks).  There are two clades of the monkeypox virus: the West African clade and the Congo Basin (Central African) clade. In this outbreak, all of the cases have been linked to the West African clade of the monkeypox virus.

Transmission occurs from animal to human, and from human to human, through close contact with lesions, body fluids, and contaminated materials. The virus enters the body through the respiratory tract, mucous membranes, or broken skin.  The disease begins with non-specific symptoms such as fever, headache, muscle pains, and swollen lymph nodes. This is followed by the typical skin rash, which progresses through stages known as macules, then papules, vesicles, pustules, and lastly crusts or scabs. Lesions can also occur on mucous membranes such as the mouth, eye, and genital area.  The infectious period lasts through all stages of the rash, until all the scabs have fallen off. There are a number of other infectious and non-infectious conditions that need to be differentiated; therefore, individuals presenting with these symptoms will need to consult their doctor to determine whether a diagnosis of monkeypox needs to be considered. In the current outbreak, a number of the cases in the United Kingdom and Europe have been detected in men who have sex with men, during visits to sexual health clinics. This pattern of spread has not previously been described and it remains to be determined whether the spread has occurred through close person-to-person contact or through sexual transmission.  

Vaccination against smallpox virus offers 85% protection against monkeypox

To date, no cases have been detected in South Africa, but the recent global spread of the severe acute respiratory syndrome coronavirus 2 (SARS_CoV-2) highlights the ability of pathogens to spread. The National Institute for Communicable Diseases (NICD) in Johannesburg offers a specialised diagnostic service for the monkeypox virus, using molecular assays and electron microscopy. 

Vaccination against the smallpox virus is believed to offer 85% protection against monkeypox, hence older persons should have some protection; however, vaccination against smallpox was phased out globally following the eradication of smallpox during the 1970s. A more recently developed vaccine against monkeypox is available but has very limited availability.  No specific antivirals are available with proven efficacy in clinical trials.

While the monkeypox virus can be spread via the respiratory route, this occurs in the form of large droplets, rather than aerosol transmission, which is seen with SARS-CoV-2 (causing COVID-19). Aerosols are smaller particles that can remain suspended in the air for prolonged periods, facilitating the transmission of SARS-CoV-2. Monkeypox is therefore less contagious than COVID-19, as close contact is required for longer periods.  For this reason, many experts around the world predict that this outbreak will not spread like SARS-CoV-2. The importation of monkeypox to South Africa is a definite possibility, because South Africa is a significant economic and travel hub for Africa. Previous outbreaks of monkeypox in non-endemic areas have been interrupted by contact tracing and isolation, which was very effective in controlling further spread.  Heightened vigilance is therefore needed for the early detection of such cases.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept