Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 June 2022 | Story Prof Felicity Burt, Prof Dominique Goedhals and Dr Charles Kotzé
Prof Felicity Burt, Dr Charles Kotze and Prof Dominique Goedhals
From the left; Prof Felicity Burt, Dr Charles Kotzé and Prof Dominique Goedhals.

Opinion article by Prof Felicity Burt , Prof Dominique Goedhals , Division of Virology at the University of the Free State (UFS), and Dr Charles Kotzé, National Health Laboratory Service (NHLS), Universitas Academic Hospital.
The recent COVID-19 pandemic has certainly highlighted the importance of vigilance and awareness of emerging diseases with public health implications. The monkeypox virus has recently made headlines, after the detection of more than 200 cases in geographically distinct regions. On 13 May, the World Health Organisation (WHO) was notified of human cases of the monkeypox disease occurring in the United Kingdom, outside of the known endemic region.

Exported cases have been detected previously and usually occur sporadically. In contrast, within the past two weeks, human cases have been confirmed in at least 21 countries, including various European countries, the United Kingdom, Israel, the Canary Islands, Canada and the United States, and Australia. The initial case appears to have been a traveller from Nigeria. Sequence data may help to determine if there have been multiple exportations from West Africa. 

What is monkeypox and what do we know

What is monkeypox and what do we know about the aetiologic agent? Monkeypox is the name given to a disease caused by the monkeypox virus, a zoonotic pathogen endemic in Central and West Africa and responsible for cases of the disease in the endemic region, with occasional exported cases in travellers. The virus was initially identified in 1958 in monkeys housed at a research laboratory in Denmark, and the name monkeypox was derived from the appearance of lesions and the occurrence in monkeys. The first human case was identified 52 years ago in the Democratic Republic of the Congo. Since then, human monkeypox cases have been reported in several other Central and West African countries: Cameroon, the Central African Republic, Ivory Coast, the Democratic Republic of the Congo, Gabon, Liberia, Nigeria, Republic of the Congo, and Sierra Leone. The first monkeypox outbreak outside of Africa was in the United States of America in 2003 and was linked to contact with infected prairie dogs imported as exotic pets. Since then, there have been various small, contained outbreaks outside of Africa that have mostly been linked to the importation of the virus from African countries. 

The virus is related to the smallpox virus, which was eradicated in the 1970s by vaccination. Although belonging to the same family of viruses as the smallpox virus, the disease caused by monkeypox is less severe, with fewer fatalities.   Unlike smallpox, which carries a case fatality rate of 30%, the case fatality rate in monkeypox is low (estimated at 3-6% in more recent outbreaks).  There are two clades of the monkeypox virus: the West African clade and the Congo Basin (Central African) clade. In this outbreak, all of the cases have been linked to the West African clade of the monkeypox virus.

Transmission occurs from animal to human, and from human to human, through close contact with lesions, body fluids, and contaminated materials. The virus enters the body through the respiratory tract, mucous membranes, or broken skin.  The disease begins with non-specific symptoms such as fever, headache, muscle pains, and swollen lymph nodes. This is followed by the typical skin rash, which progresses through stages known as macules, then papules, vesicles, pustules, and lastly crusts or scabs. Lesions can also occur on mucous membranes such as the mouth, eye, and genital area.  The infectious period lasts through all stages of the rash, until all the scabs have fallen off. There are a number of other infectious and non-infectious conditions that need to be differentiated; therefore, individuals presenting with these symptoms will need to consult their doctor to determine whether a diagnosis of monkeypox needs to be considered. In the current outbreak, a number of the cases in the United Kingdom and Europe have been detected in men who have sex with men, during visits to sexual health clinics. This pattern of spread has not previously been described and it remains to be determined whether the spread has occurred through close person-to-person contact or through sexual transmission.  

Vaccination against smallpox virus offers 85% protection against monkeypox

To date, no cases have been detected in South Africa, but the recent global spread of the severe acute respiratory syndrome coronavirus 2 (SARS_CoV-2) highlights the ability of pathogens to spread. The National Institute for Communicable Diseases (NICD) in Johannesburg offers a specialised diagnostic service for the monkeypox virus, using molecular assays and electron microscopy. 

Vaccination against the smallpox virus is believed to offer 85% protection against monkeypox, hence older persons should have some protection; however, vaccination against smallpox was phased out globally following the eradication of smallpox during the 1970s. A more recently developed vaccine against monkeypox is available but has very limited availability.  No specific antivirals are available with proven efficacy in clinical trials.

While the monkeypox virus can be spread via the respiratory route, this occurs in the form of large droplets, rather than aerosol transmission, which is seen with SARS-CoV-2 (causing COVID-19). Aerosols are smaller particles that can remain suspended in the air for prolonged periods, facilitating the transmission of SARS-CoV-2. Monkeypox is therefore less contagious than COVID-19, as close contact is required for longer periods.  For this reason, many experts around the world predict that this outbreak will not spread like SARS-CoV-2. The importation of monkeypox to South Africa is a definite possibility, because South Africa is a significant economic and travel hub for Africa. Previous outbreaks of monkeypox in non-endemic areas have been interrupted by contact tracing and isolation, which was very effective in controlling further spread.  Heightened vigilance is therefore needed for the early detection of such cases.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept