Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS
During the installation of the new computer and projector equipment at the Naval Hill Planetarium, were from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS.

The Naval Hill Planetarium at the Centre for Earth and Space on Naval Hill was inaugurated on 1 November 2013. It was the first digital planetarium in Africa south of the Sahara. 

The Department of Physics at the University of the Free State (UFS) is responsible for the Naval Hill Planetarium (formerly the Lamont-Hussey Observatory). The department uses the planetarium to educate and inform citizens about the natural sciences. The planetarium, together with the Boyden Observatory, is also important for the display and communication of South Africa’s astronomical heritage.

The planetarium system was recently upgraded in a project that cost R6 million. According to Prof Matie Hoffman from the Department of Physics, it was time to upgrade the computers and graphic cards, and to replace the lamp projectors with laser projectors.

Funding for the state-of-the-art equipment came from the Faculty of Natural and Agricultural Sciences and the Information and Communication Technology Services (ICT Services) at the university. Businesses in Bloemfontein – First Technology and Raubex Construction – also contributed to the project. 

Presenting programmes more often

Planetarium specialists Dieter Schwab and Alex Reither from Sky-Skan Europe, based in Germany, installed the new equipment over a period of two weeks.

Prof Hoffman says the new equipment will enhance the experience of people visiting the planetarium for a close encounter with the wonders of the universe to deepen their appreciation of science and astronomy.

“Besides a clearer image with better colour, the new projectors will also be more economical to operate. This means we will be able to offer programmes at the planetarium more often,” he says. 

The upgrades also include new software. Prof Hoffman explains that the software will enable more sophisticated presentations and open the door to the use of the planetarium for higher level visualisation of scientific data where any large data sets with many variables are involved, such as climate science, astrophysics, and cosmology. 

Offering an incredible experience

After completion of the installation, a period of two weeks will be spent on training to master the use of the new equipment and the software. The public can expect the first show with the new equipment at the end of June. 

“I am most looking forward to the planetarium creating an incredible experience – better than in the past – for the public and increasing everyone's admiration and understanding of the universe. I also believe the planetarium is an excellent facility to improve students' skills in science communication, and it provides these students the opportunity to share their knowledge with the public,” concludes Prof Hoffman. 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept