Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS
During the installation of the new computer and projector equipment at the Naval Hill Planetarium, were from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS.

The Naval Hill Planetarium at the Centre for Earth and Space on Naval Hill was inaugurated on 1 November 2013. It was the first digital planetarium in Africa south of the Sahara. 

The Department of Physics at the University of the Free State (UFS) is responsible for the Naval Hill Planetarium (formerly the Lamont-Hussey Observatory). The department uses the planetarium to educate and inform citizens about the natural sciences. The planetarium, together with the Boyden Observatory, is also important for the display and communication of South Africa’s astronomical heritage.

The planetarium system was recently upgraded in a project that cost R6 million. According to Prof Matie Hoffman from the Department of Physics, it was time to upgrade the computers and graphic cards, and to replace the lamp projectors with laser projectors.

Funding for the state-of-the-art equipment came from the Faculty of Natural and Agricultural Sciences and the Information and Communication Technology Services (ICT Services) at the university. Businesses in Bloemfontein – First Technology and Raubex Construction – also contributed to the project. 

Presenting programmes more often

Planetarium specialists Dieter Schwab and Alex Reither from Sky-Skan Europe, based in Germany, installed the new equipment over a period of two weeks.

Prof Hoffman says the new equipment will enhance the experience of people visiting the planetarium for a close encounter with the wonders of the universe to deepen their appreciation of science and astronomy.

“Besides a clearer image with better colour, the new projectors will also be more economical to operate. This means we will be able to offer programmes at the planetarium more often,” he says. 

The upgrades also include new software. Prof Hoffman explains that the software will enable more sophisticated presentations and open the door to the use of the planetarium for higher level visualisation of scientific data where any large data sets with many variables are involved, such as climate science, astrophysics, and cosmology. 

Offering an incredible experience

After completion of the installation, a period of two weeks will be spent on training to master the use of the new equipment and the software. The public can expect the first show with the new equipment at the end of June. 

“I am most looking forward to the planetarium creating an incredible experience – better than in the past – for the public and increasing everyone's admiration and understanding of the universe. I also believe the planetarium is an excellent facility to improve students' skills in science communication, and it provides these students the opportunity to share their knowledge with the public,” concludes Prof Hoffman. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept