Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS
During the installation of the new computer and projector equipment at the Naval Hill Planetarium, were from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS.

The Naval Hill Planetarium at the Centre for Earth and Space on Naval Hill was inaugurated on 1 November 2013. It was the first digital planetarium in Africa south of the Sahara. 

The Department of Physics at the University of the Free State (UFS) is responsible for the Naval Hill Planetarium (formerly the Lamont-Hussey Observatory). The department uses the planetarium to educate and inform citizens about the natural sciences. The planetarium, together with the Boyden Observatory, is also important for the display and communication of South Africa’s astronomical heritage.

The planetarium system was recently upgraded in a project that cost R6 million. According to Prof Matie Hoffman from the Department of Physics, it was time to upgrade the computers and graphic cards, and to replace the lamp projectors with laser projectors.

Funding for the state-of-the-art equipment came from the Faculty of Natural and Agricultural Sciences and the Information and Communication Technology Services (ICT Services) at the university. Businesses in Bloemfontein – First Technology and Raubex Construction – also contributed to the project. 

Presenting programmes more often

Planetarium specialists Dieter Schwab and Alex Reither from Sky-Skan Europe, based in Germany, installed the new equipment over a period of two weeks.

Prof Hoffman says the new equipment will enhance the experience of people visiting the planetarium for a close encounter with the wonders of the universe to deepen their appreciation of science and astronomy.

“Besides a clearer image with better colour, the new projectors will also be more economical to operate. This means we will be able to offer programmes at the planetarium more often,” he says. 

The upgrades also include new software. Prof Hoffman explains that the software will enable more sophisticated presentations and open the door to the use of the planetarium for higher level visualisation of scientific data where any large data sets with many variables are involved, such as climate science, astrophysics, and cosmology. 

Offering an incredible experience

After completion of the installation, a period of two weeks will be spent on training to master the use of the new equipment and the software. The public can expect the first show with the new equipment at the end of June. 

“I am most looking forward to the planetarium creating an incredible experience – better than in the past – for the public and increasing everyone's admiration and understanding of the universe. I also believe the planetarium is an excellent facility to improve students' skills in science communication, and it provides these students the opportunity to share their knowledge with the public,” concludes Prof Hoffman. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept