Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 June 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS
During the installation of the new computer and projector equipment at the Naval Hill Planetarium, were from the left: Dieter Schwab and Alex Reither from Sky-Skan, and Prof Matie Hoffman, Barry Crous (Instrumentation), and Pat van Heerden (Department of Physics) from the UFS.

The Naval Hill Planetarium at the Centre for Earth and Space on Naval Hill was inaugurated on 1 November 2013. It was the first digital planetarium in Africa south of the Sahara. 

The Department of Physics at the University of the Free State (UFS) is responsible for the Naval Hill Planetarium (formerly the Lamont-Hussey Observatory). The department uses the planetarium to educate and inform citizens about the natural sciences. The planetarium, together with the Boyden Observatory, is also important for the display and communication of South Africa’s astronomical heritage.

The planetarium system was recently upgraded in a project that cost R6 million. According to Prof Matie Hoffman from the Department of Physics, it was time to upgrade the computers and graphic cards, and to replace the lamp projectors with laser projectors.

Funding for the state-of-the-art equipment came from the Faculty of Natural and Agricultural Sciences and the Information and Communication Technology Services (ICT Services) at the university. Businesses in Bloemfontein – First Technology and Raubex Construction – also contributed to the project. 

Presenting programmes more often

Planetarium specialists Dieter Schwab and Alex Reither from Sky-Skan Europe, based in Germany, installed the new equipment over a period of two weeks.

Prof Hoffman says the new equipment will enhance the experience of people visiting the planetarium for a close encounter with the wonders of the universe to deepen their appreciation of science and astronomy.

“Besides a clearer image with better colour, the new projectors will also be more economical to operate. This means we will be able to offer programmes at the planetarium more often,” he says. 

The upgrades also include new software. Prof Hoffman explains that the software will enable more sophisticated presentations and open the door to the use of the planetarium for higher level visualisation of scientific data where any large data sets with many variables are involved, such as climate science, astrophysics, and cosmology. 

Offering an incredible experience

After completion of the installation, a period of two weeks will be spent on training to master the use of the new equipment and the software. The public can expect the first show with the new equipment at the end of June. 

“I am most looking forward to the planetarium creating an incredible experience – better than in the past – for the public and increasing everyone's admiration and understanding of the universe. I also believe the planetarium is an excellent facility to improve students' skills in science communication, and it provides these students the opportunity to share their knowledge with the public,” concludes Prof Hoffman. 

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept