Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2022 | Story Leonie Bolleurs | Photo Supplied
Walter van Niekerk_
If you are so focused on achieving only certain goals in your life, you might miss the best opportunities, believes Dr Walter van Niekerk, who recently received his PhD in Agricultural Economics.

Being relevant in a constantly changing agricultural environment. This is one of Dr Walter van Niekerk’s biggest motivations in his working life. The place where he believes he will be able to do just that, is the University of the Free State (UFS). “The university was the best plan for my life,” he says. 

Whether it is in research or in learning and teaching, Dr Van Niekerk, Lecturer in the UFS Department of Agricultural Economics, believes that with a positive attitude and the ability to be adaptable to change, one will be able to make the most of any opportunity crossing your path. If you give 110% every day, you will be ready for any possibility. He is lecturing Agricultural Finance and Agri-business Management, focusing on agricultural business plans, to first- and third-year students, respectively. 

Contribute to findings on predation management

At the recent April graduation ceremonies, he was awarded his PhD. The title of his thesis was: An estimation of the downstream economic implications of predation in the South African red meat industry.

In his thesis, he outlined the economic impact of predation in the livestock sector and red meat industry. He believes the significant damage caused by predators cannot be controlled by man-made borders. “There is a reason for these animals' existence; they just need to be managed properly at national level by government,” he says.

The aim of his study was to contribute to and combine any findings on the predation problem, and to put these findings on a macroeconomic platform to inform government of the extent of this problem in order for them to develop strategies, policies, and mitigation methods to reduce predation and lessen the impact thereof.

Thus far, excerpts from his thesis have also been published as two articles in peer-reviewed scientific journals – a peer-reviewed journal of the National Museum, Indago, as well as the journal, Frontiers in Sustainable Supply Chain Management.

With predation being a constant point of discussion at agricultural associations’ monthly meetings, he believes that the research topic he has selected for his PhD is relevant and that the outcomes of his study will be able to make a difference in the agriculture sector. His work is more than just theory. He identified a problem – the damage that predation does to the red meat industry – and found a practical solution to it.  

Students staying relevant in a fast-changing environment 

Besides the possible impact he will have on the red meat industry, the PhD was also a means to an end – to develop himself as an agricultural economist in order to become an industry expert in his field.

He also takes his role as lecturer very seriously. It is important to him that his students, once they have completed their studies, must have an actual understanding of the field and that they must be able to stay relevant in a fast-changing environment by practically applying what they have learnt. 

In his free time, Dr Van Niekerk enjoys applying his knowledge. Besides his consultancy work with farmers, he also serves on Free State Agriculture’s Young Farmer Committee, and he is a technical adviser to the National Lucerne Trust (NLT), assisting them with their grading processes to ensure that their quality system is free of any irregularities, and that they stay relevant in the industry. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept