Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2022 | Story Leonie Bolleurs | Photo Supplied
Walter van Niekerk_
If you are so focused on achieving only certain goals in your life, you might miss the best opportunities, believes Dr Walter van Niekerk, who recently received his PhD in Agricultural Economics.

Being relevant in a constantly changing agricultural environment. This is one of Dr Walter van Niekerk’s biggest motivations in his working life. The place where he believes he will be able to do just that, is the University of the Free State (UFS). “The university was the best plan for my life,” he says. 

Whether it is in research or in learning and teaching, Dr Van Niekerk, Lecturer in the UFS Department of Agricultural Economics, believes that with a positive attitude and the ability to be adaptable to change, one will be able to make the most of any opportunity crossing your path. If you give 110% every day, you will be ready for any possibility. He is lecturing Agricultural Finance and Agri-business Management, focusing on agricultural business plans, to first- and third-year students, respectively. 

Contribute to findings on predation management

At the recent April graduation ceremonies, he was awarded his PhD. The title of his thesis was: An estimation of the downstream economic implications of predation in the South African red meat industry.

In his thesis, he outlined the economic impact of predation in the livestock sector and red meat industry. He believes the significant damage caused by predators cannot be controlled by man-made borders. “There is a reason for these animals' existence; they just need to be managed properly at national level by government,” he says.

The aim of his study was to contribute to and combine any findings on the predation problem, and to put these findings on a macroeconomic platform to inform government of the extent of this problem in order for them to develop strategies, policies, and mitigation methods to reduce predation and lessen the impact thereof.

Thus far, excerpts from his thesis have also been published as two articles in peer-reviewed scientific journals – a peer-reviewed journal of the National Museum, Indago, as well as the journal, Frontiers in Sustainable Supply Chain Management.

With predation being a constant point of discussion at agricultural associations’ monthly meetings, he believes that the research topic he has selected for his PhD is relevant and that the outcomes of his study will be able to make a difference in the agriculture sector. His work is more than just theory. He identified a problem – the damage that predation does to the red meat industry – and found a practical solution to it.  

Students staying relevant in a fast-changing environment 

Besides the possible impact he will have on the red meat industry, the PhD was also a means to an end – to develop himself as an agricultural economist in order to become an industry expert in his field.

He also takes his role as lecturer very seriously. It is important to him that his students, once they have completed their studies, must have an actual understanding of the field and that they must be able to stay relevant in a fast-changing environment by practically applying what they have learnt. 

In his free time, Dr Van Niekerk enjoys applying his knowledge. Besides his consultancy work with farmers, he also serves on Free State Agriculture’s Young Farmer Committee, and he is a technical adviser to the National Lucerne Trust (NLT), assisting them with their grading processes to ensure that their quality system is free of any irregularities, and that they stay relevant in the industry. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept