Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 March 2022 | Story André Damons | Photo UFS Photo Archive
Prof Matsabisa
Prof Motlalepula Matsabisa is a professor and Director of Pharmacology at the University of the Free State (UFS)

The Department of Pharmacology at the University of the Free State (UFS) and FARMOVS have teamed up to conduct the first South African Health Products Regulatory Authority (SAHPRA)-approved multicentre controlled clinical trial of a plant-based product, PHELA, on mild to moderate COVID-19 patients.  

According to Prof Motlalepula Matsabisa, professor and Director of Pharmacology at UFS, it is anticipated that the trial will start in early April with each patient being on treatment for 28 days.

“The main purpose of the clinical trial is to confirm that the product can treat COVID-19 and be registered as a medication for this indication. We believe the medication works as an immune modulator to modulate the cytokine storm due to COVID-19 and also restores and normalises the patient’s immune system. We plan to have 250 patients who suffer from mild to moderate COVID-19,” explains Prof Matsabisa. 

This pivotal study, he says, is based on the modification of the World Health Organisation (WHO) Master protocol for clinical trials. The use of FARMOVS, a wholly owned clinical research company of the UFS Bloemfontein campus, for this clinical trial was to implement the collaborative initiatives between UFS and FARMOVS on clinical research, training, and other research projects.

What is PHELA?

Prof Matsabisa, deputy president of the South African Society for Basic and Clinical Pharmacology Society (SASBCP), says the development of PHELA has been under stringent scientific scrutiny for its safety in both preclinical and clinical research. The efficacy of PHELA as both an immune modulator and an anti-SARS-COV-2 has been proven in vitro and in vivo with reproducible results conducted by three independent research institutions and a science council.
The Department of Pharmacology and FARMOVS are collaborating on a number of studies to advance clinical research on African Traditional Medicines (ATM).

On the use of PHELA, Prof Matsabisa explains: “PHELA is a herbal product made of four medicinal plants. Traditionally PHELA has been claimed for use for a historical disease called muyaga, but recently has been scientifically tested and found effective as an immune modulator and benefiting persons with a compromised immune system.
“The PHELA plants are found in most provinces of South Africa and we have cultivated them to control their growth to produce quality raw materials.” 

“The SAHPRA-approved clinical trial will be conducted in the Eastern Cape, Northern Cape and Gauteng. The clinical trial will be conducted by a complement of medical staff and clinicians with vast experience of many active years of clinical trials.
 
“The study, we believe, is a benchmark for all future traditional medicines clinical trial protocols and studies. The studies are expected to start immediately after the product batch manufacturing of the study product, PHELA, is completed and this will be within a month’s time. “A lot of good scientific preclinical safety and efficacy research has gone into the development of the study product for it to reach this stage.

“The efficacy studies have shown convincingly that PHELA is an immune reconstitution product and does have an effect in killing the SARS-COV-2 virus and most of its variants.  PHELA efficacy, therefore, needs to be confirmed through randomised controlled multicentre clinical trials in COVID-19 patients,” Prof Matsabisa says.

Medicinal plants have previously been used to eradicate life-threatening viruses 

Although medicinal plants have been used to combat previous pandemics such as the Spanish flu, avian influenza and others, we still believe rigorous control and efficacy thereof is still to be supported by scientific research and development, says Prof Matsabisa. 

Prof Matsabisa, the current chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines (REACT), adds: “We have better technologies and resources now, which is why we should take the next step in research to promote consumer safety and to offer them effective alternatives. We do the science to aid in building the herbal industry and develop sustained consumer confidence in traditional medicines. 

Africa should lead the way to a healthier future for all
“My vision is for Africa to share our valuable resources with the world by developing, and distributing world-class medicinal solutions. We should develop and strengthen the pharmaceutical local production of well-researched, quality, safe and efficacious African traditional medicines as commercial products. We are more than capable of doing so and now is the time to do it. Numerous discussions have taken place where other African countries will join South Africa in conducting multicentre studies in clinical trials for traditional medicines. 

“We need to develop or create, based on this current collaborative work with partners like FARMOVS, health centres with a strong focus on African medicines, health products and healing, but in a very strong collaborative initiative with other health systems”, concludes Prof Matsabisa.

Prof Matsabisa was recently awarded a Visiting Professorship at the Beijing University of Chinese Medicine (BUCM) in Beijing, China. He was also recommended to Naledi Pandor, Minister of International Relations and Cooperation, to be part of the India, Brazil and South Africa (IBSA) working group in traditional medicine through his participation in the national department of health technical committee on traditional medicines where he has been appointed by the Minister of Health, Dr Joe Phaahla.

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept