Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 March 2022 | Story André Damons | Photo UFS Photo Archive
Prof Matsabisa
Prof Motlalepula Matsabisa is a professor and Director of Pharmacology at the University of the Free State (UFS)

The Department of Pharmacology at the University of the Free State (UFS) and FARMOVS have teamed up to conduct the first South African Health Products Regulatory Authority (SAHPRA)-approved multicentre controlled clinical trial of a plant-based product, PHELA, on mild to moderate COVID-19 patients.  

According to Prof Motlalepula Matsabisa, professor and Director of Pharmacology at UFS, it is anticipated that the trial will start in early April with each patient being on treatment for 28 days.

“The main purpose of the clinical trial is to confirm that the product can treat COVID-19 and be registered as a medication for this indication. We believe the medication works as an immune modulator to modulate the cytokine storm due to COVID-19 and also restores and normalises the patient’s immune system. We plan to have 250 patients who suffer from mild to moderate COVID-19,” explains Prof Matsabisa. 

This pivotal study, he says, is based on the modification of the World Health Organisation (WHO) Master protocol for clinical trials. The use of FARMOVS, a wholly owned clinical research company of the UFS Bloemfontein campus, for this clinical trial was to implement the collaborative initiatives between UFS and FARMOVS on clinical research, training, and other research projects.

What is PHELA?

Prof Matsabisa, deputy president of the South African Society for Basic and Clinical Pharmacology Society (SASBCP), says the development of PHELA has been under stringent scientific scrutiny for its safety in both preclinical and clinical research. The efficacy of PHELA as both an immune modulator and an anti-SARS-COV-2 has been proven in vitro and in vivo with reproducible results conducted by three independent research institutions and a science council.
The Department of Pharmacology and FARMOVS are collaborating on a number of studies to advance clinical research on African Traditional Medicines (ATM).

On the use of PHELA, Prof Matsabisa explains: “PHELA is a herbal product made of four medicinal plants. Traditionally PHELA has been claimed for use for a historical disease called muyaga, but recently has been scientifically tested and found effective as an immune modulator and benefiting persons with a compromised immune system.
“The PHELA plants are found in most provinces of South Africa and we have cultivated them to control their growth to produce quality raw materials.” 

“The SAHPRA-approved clinical trial will be conducted in the Eastern Cape, Northern Cape and Gauteng. The clinical trial will be conducted by a complement of medical staff and clinicians with vast experience of many active years of clinical trials.
 
“The study, we believe, is a benchmark for all future traditional medicines clinical trial protocols and studies. The studies are expected to start immediately after the product batch manufacturing of the study product, PHELA, is completed and this will be within a month’s time. “A lot of good scientific preclinical safety and efficacy research has gone into the development of the study product for it to reach this stage.

“The efficacy studies have shown convincingly that PHELA is an immune reconstitution product and does have an effect in killing the SARS-COV-2 virus and most of its variants.  PHELA efficacy, therefore, needs to be confirmed through randomised controlled multicentre clinical trials in COVID-19 patients,” Prof Matsabisa says.

Medicinal plants have previously been used to eradicate life-threatening viruses 

Although medicinal plants have been used to combat previous pandemics such as the Spanish flu, avian influenza and others, we still believe rigorous control and efficacy thereof is still to be supported by scientific research and development, says Prof Matsabisa. 

Prof Matsabisa, the current chairperson of the World Health Organisation’s (WHO) Regional Expert Advisory Committee on Traditional Medicines (REACT), adds: “We have better technologies and resources now, which is why we should take the next step in research to promote consumer safety and to offer them effective alternatives. We do the science to aid in building the herbal industry and develop sustained consumer confidence in traditional medicines. 

Africa should lead the way to a healthier future for all
“My vision is for Africa to share our valuable resources with the world by developing, and distributing world-class medicinal solutions. We should develop and strengthen the pharmaceutical local production of well-researched, quality, safe and efficacious African traditional medicines as commercial products. We are more than capable of doing so and now is the time to do it. Numerous discussions have taken place where other African countries will join South Africa in conducting multicentre studies in clinical trials for traditional medicines. 

“We need to develop or create, based on this current collaborative work with partners like FARMOVS, health centres with a strong focus on African medicines, health products and healing, but in a very strong collaborative initiative with other health systems”, concludes Prof Matsabisa.

Prof Matsabisa was recently awarded a Visiting Professorship at the Beijing University of Chinese Medicine (BUCM) in Beijing, China. He was also recommended to Naledi Pandor, Minister of International Relations and Cooperation, to be part of the India, Brazil and South Africa (IBSA) working group in traditional medicine through his participation in the national department of health technical committee on traditional medicines where he has been appointed by the Minister of Health, Dr Joe Phaahla.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept