Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 March 2022 | Story Prof Frikkie Maré | Photo Supplied
Prof Frikkie Maré is from the Department of Agricultural Economics at the University of the Free State (UFS)

Opinion article by Prof Frikkie Maré, Department of Agricultural Economics, University of the Free State.
In William Shakespeare’s play Julius Caesar, Mark Antony utters the words: “Cry ‘Havoc!’, and let slip the dogs of war,” after learning about the murder of Julius Caesar. With these words he meant that chaos would ensue (havoc) to create the opportunity for violence (let slip the dogs of war).

The recent invasion (or military operation, according to Russian President Vladimir Putin) by Russian armed forces into Ukraine brought the famous words of Shakespeare to mind. Putin cried “Havoc!” and his troops created chaos in Ukraine. This is, however, not where it stopped because the dogs of war have been released into the rest of the world.

What is the impact on South Africa?

The day after the invasion we felt the bite of the dogs of war in South Africa. The rand suddenly weakened against the dollar, oil and gold prices increased sharply, and grain and oilseed prices on commodity markets increased 

This was before the rest of the world started to implement sanctions against Russia, which could be described as a shock reaction due to uncertainty as to how the situation would unfold. In the days after the initial market reaction we saw the markets actually “cool down” a bit, with most sharp initial reactions starting to change back to former positions. This period was, however, short-lived when the world hit back by closing airspace and borders and refusing to import products from Russia or export to them. The sanctions were in solidarity with Ukraine as an attempt to bring the Russian economy to its knees and force the Russians to withdraw from Ukraine.

Although the sanctions against Russia should certainly be successful over the long term, it does not change much in the short term and we will have to deal with the international effects of this conflict. The question then is, how will this affect South Africa?

Although there are no straightforward answers, as the impact will depend on what one’s role is in the economy. One thing for certain is that the total cost will outnumber the benefits. What affects everyone in South Africa, and the starting point of many secondary effects, is the increase in the price of crude oil. Russia is the second-largest producer of crude oil in the world and if the West is going to ban the import of Russian oil we will have an international shortage. Although the banning of Russian oil is the right thing to do to support Ukraine, it will have devastating effects on all countries in the world, with sharp increases in inflation.  

The increase in the price of oil not only drives up the cost of transportation of people and products, but also manufacturing costs. Fertiliser prices are correlated with the oil price, and it will thus drive up the production cost of grain and oilseeds.

Speaking of grain and oilseed prices, the Black Sea region (which includes Russia and Ukraine), are major exporters of wheat and sunflower seed and oil. The prices of these commodities have soared in international and South Africa markets over the past few weeks. Although it might seem like good news for our farmers, the increase in prices are offset by high fertiliser prices and the local shortage of fertiliser. This may lead to fewer hectares of wheat being planted this year in the winter rainfall regions.  

Nothing good is coming from this situation

In terms of agricultural commodities, both Russia and Ukraine are important importers of South African products, especially citrus, stone fruit and grapes.  Alternative markets now need to be found for these products which will affect prices negatively.

Although one needs to write a thesis to explain all the effects of the Russian-Ukraine conflict, the dogs of war have been slipped, and it is clear from the few examples that nothing good is coming from this situation. In short, we will see higher fuel prices (maybe not R40/litre, but R25 to R30/litre is possible), higher food prices, higher inflation and a higher interest rate.  

These factors affect all South-Africans, especially the poor and some in the middle class who will struggle in the short term. The time has come to cut down on luxuries and tighten belts to survive in the short term until there is certainty about how the havoc in Ukraine will play out.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept