Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 March 2022 | Story Prof Frikkie Maré | Photo Supplied
Prof Frikkie Maré is from the Department of Agricultural Economics at the University of the Free State (UFS)

Opinion article by Prof Frikkie Maré, Department of Agricultural Economics, University of the Free State.
In William Shakespeare’s play Julius Caesar, Mark Antony utters the words: “Cry ‘Havoc!’, and let slip the dogs of war,” after learning about the murder of Julius Caesar. With these words he meant that chaos would ensue (havoc) to create the opportunity for violence (let slip the dogs of war).

The recent invasion (or military operation, according to Russian President Vladimir Putin) by Russian armed forces into Ukraine brought the famous words of Shakespeare to mind. Putin cried “Havoc!” and his troops created chaos in Ukraine. This is, however, not where it stopped because the dogs of war have been released into the rest of the world.

What is the impact on South Africa?

The day after the invasion we felt the bite of the dogs of war in South Africa. The rand suddenly weakened against the dollar, oil and gold prices increased sharply, and grain and oilseed prices on commodity markets increased 

This was before the rest of the world started to implement sanctions against Russia, which could be described as a shock reaction due to uncertainty as to how the situation would unfold. In the days after the initial market reaction we saw the markets actually “cool down” a bit, with most sharp initial reactions starting to change back to former positions. This period was, however, short-lived when the world hit back by closing airspace and borders and refusing to import products from Russia or export to them. The sanctions were in solidarity with Ukraine as an attempt to bring the Russian economy to its knees and force the Russians to withdraw from Ukraine.

Although the sanctions against Russia should certainly be successful over the long term, it does not change much in the short term and we will have to deal with the international effects of this conflict. The question then is, how will this affect South Africa?

Although there are no straightforward answers, as the impact will depend on what one’s role is in the economy. One thing for certain is that the total cost will outnumber the benefits. What affects everyone in South Africa, and the starting point of many secondary effects, is the increase in the price of crude oil. Russia is the second-largest producer of crude oil in the world and if the West is going to ban the import of Russian oil we will have an international shortage. Although the banning of Russian oil is the right thing to do to support Ukraine, it will have devastating effects on all countries in the world, with sharp increases in inflation.  

The increase in the price of oil not only drives up the cost of transportation of people and products, but also manufacturing costs. Fertiliser prices are correlated with the oil price, and it will thus drive up the production cost of grain and oilseeds.

Speaking of grain and oilseed prices, the Black Sea region (which includes Russia and Ukraine), are major exporters of wheat and sunflower seed and oil. The prices of these commodities have soared in international and South Africa markets over the past few weeks. Although it might seem like good news for our farmers, the increase in prices are offset by high fertiliser prices and the local shortage of fertiliser. This may lead to fewer hectares of wheat being planted this year in the winter rainfall regions.  

Nothing good is coming from this situation

In terms of agricultural commodities, both Russia and Ukraine are important importers of South African products, especially citrus, stone fruit and grapes.  Alternative markets now need to be found for these products which will affect prices negatively.

Although one needs to write a thesis to explain all the effects of the Russian-Ukraine conflict, the dogs of war have been slipped, and it is clear from the few examples that nothing good is coming from this situation. In short, we will see higher fuel prices (maybe not R40/litre, but R25 to R30/litre is possible), higher food prices, higher inflation and a higher interest rate.  

These factors affect all South-Africans, especially the poor and some in the middle class who will struggle in the short term. The time has come to cut down on luxuries and tighten belts to survive in the short term until there is certainty about how the havoc in Ukraine will play out.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept