Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 March 2022 | Story Prof Anthony Turton | Photo Supplied
Prof Anthony Turton, Affiliated Professor in the Centre for Environmental Management at the University of the Free State (UFS), writes that in the face of the typhoid outbreak, we need to renew our trust in science, but also wake up and smell the coffee.

Opinion article by Prof Anthony Turton from the Centre for Environmental Management, University of the Free State .
The recent news has been dominated by so many things that an important signal has been drowned out by the noise. That small signal is the announcement by the NICD that typhoid has been identified in parts of the country, so the prudent approach is to boil the water coming from taps. While this is an important development, it needs to be placed into context.  For starters, the NICD is a credible institution, so anything they say must be taken seriously. This issue brings three important factors into clear focus. Let us unpack each of these in order to gain greater perspective. 

The issue of trust 

The first is the issue of trust. This is a global phenomenon, most notably associated with social media that has enabled each person to theoretically have access to the entire quantum of our cumulative knowledge as an apex species on planet earth. In an instant, each person has the capacity to become an expert on a given topic. We have seen this playing out in the COVID-19 space, most notably as the efficacy of the vaccination programme has been questioned. While it is great that so much information is available to everyone instantly, it is also a problem, because unless the individual is trained to filter out the noise, they are rapidly overloaded with stuff that causes them to panic. In South Africa this has an added dimension, driven by the findings of the Zondo Commission, which in general indicate a severe trust deficit between government and the general population. Seen in this light, it is highly likely that the typhoid issue will fall directly into that chasm of trust and serve to widen it even further. This needs to be dealt with in our collective best interest, because panic serves nobody in a constructive way. Therefore, the first part of my core message is that we must avoid the urge to become instant experts by deferring the scientific facts to the scientific professionals. Sadly, science has been a victim of this trust deficit, so my voice might be lost in the howling gale of discontentment. 

The problem of deteriorating water quality

The second is the problem of deteriorating water quality. In this regard, we are on absolutely solid ground, because we know – without fear of contradiction – that our water quality has been on a downward trajectory for some time. If we are looking for a pivotal moment, we might consider the acid mine drainage decant that first hit the public attention in 2002. Amid a flurry of activism and a media frenzy, we have the sad reality, two decades later, that absolutely nothing has been done about this matter. Highly acidic mine water, rich in a dissolved cocktail of metals that include uranium, arsenic, cadmium, and mercury, have continued to flow into our rivers and dams in mining areas of the country. But more importantly, we have also witnessed the systematic collapse of our wastewater infrastructure, which has accelerated over the past decade; this is best epitomised by the unsuccessful attempt of the SANDF to prevent the flow of raw sewage into the Vaal River at Emfuleni. Two billion rand later, we are no closer today to finding a solution than we were a decade ago. The numbers are staggering. As a nation, we produce over five billion litres of raw sewage every day. The latest credible calculation of that flow indicated that about 4,2 billion litres were being discharged daily into our rivers in an untreated format. That represents a tsunami of human waste inundating our rivers and dams, without respite, for more than a decade. 

This is probably our biggest single challenge as a nation. In my professional opinion, this is a national security issue, because it impacts negatively on the lives of each citizen daily. It is destroying the economy from within by damaging the health of the individual, without them even knowing about it. You see, in sewage return flows, we find every substance that is ever dispensed in the retail sector. Think of the pharmaceutical industry. Imagine how much medication is sold each day by major pharmacies countrywide. Every item sold ends up in the sewage stream in a partially metabolised format. These include antibiotics, antiretrovirals, antidepressants, oestrogen used for contraception, and Viagra used to keep an aging population happy. So, we need to think of the sewage streams being discharged into our rivers and dams as thousands of tons of medication, still viable even in its partially metabolised form, to which we are exposing trillions of pathogenic microbes that are flourishing in the warm nutrient-rich waters. Think of this as a boot camp for microbes, because lazy and weak ones are destroyed by the low concentration of antibiotics, leaving only the stronger ones to flourish. In short, our boot camp for microbes is producing the next generation of multidrug-resistant pathogens. It is happening right before our eyes.  Simply think about this logically and draw your own conclusion if you choose to mistrust science for reasons of your own.  Does it make sense to allow the discharge of more than four billion litres of sewage daily into our rivers and dams, without anticipating some form of unintended consequence?  

Our ability to cope as a nation

The third is the issue of our ability to cope as a nation. Here is where it gets really interesting, because at the very time when we are facing multiple risks to our economic well-being – COVID-19, unemployment, capital flight, energy crisis, corruption, to name but a few – we also need to be at our peak performance when it comes to finding solutions. We can say, with a high level of confidence, that our capacity to reach consensus on the way to solve the complex problems we are facing, is probably at an historic low (and deteriorating). In fact, we can say that there is an inverse relationship between our need to find consensus on a viable way ahead, and our capacity to generate the very consensus on which our survival as a species depends. This sounds a little dramatic, but I am using it to illustrate the point that globally, our capacity to unite in the face of a single common threat – climate change – is being eroded by many forces. These include the deficit of trust in government (point one noted above), the growing mistrust of science (exacerbated by the COVID-19 pandemic and the manifest as social pushback from the anti-vaxxers and the climate change denialists), and the increased sense of helplessness that each person is confronted with.

All of these are manifested in the typhoid issue. While typhoid is clearly a bad thing, we need to place it in context. Just as the COVID issue has shown us, the fatalities are relatively few, and while tragic to the individual families impacted, seen through the lens of logic and reason, this is not a show-stopper. What it does is highlight the issue of our failing sewage infrastructure. We can no longer simply accept that incompetent politicians can muddle their way through a growing crisis. We have to hold them accountable. We must convert the rising sense of rage into the high-octane rocket fuel of change. We need to say enough is enough. Now is the time that we demand technically competent people be appointed into specialist jobs, and then held fully accountable. We need to depoliticise the deployment of cadres, for that policy has brought us the failing infrastructure we see in Eskom, PRASA, municipal wastewater systems, and many other failed SOEs. 

In the face of the typhoid outbreak, we need to renew our trust in science, but also wake up and smell the coffee by realising that we cannot simply discharge billions of litres of acidic mine water and raw sewage into our rivers and dams, without encountering unintended consequences. Those consequences might just be deadly.

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept