Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 March 2022 | Story Andre Damons | Photo Sonia Small (Kaleidoscope Studios)
Prof Abdon Antangana
Prof Abdon Atangana, a Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS) and South Africa’s top-ranked scientist in Mathematics, wants to prepare the next generation of African professors.

A new book written by Prof Abdon Atangana, Professor of Applied Mathematics at the Institute for Groundwater Studies at the University of the Free State (UFS), in collaboration with one of his students, on the flow of groundwater, suggests several new and modified models to better predict anomalous behaviours of the flow and the movement of pollution within complex geological formations.

Mathematical Analysis of Groundwater Flow Models is one of two books Prof Atangana published recently that he wrote with his students. The other, Fractional Stochastic Differential Equations: Applications to Covid-19 Modeling, provides a thorough conversation on the underpinnings of COVID-19 spread modelling. He wrote the book with a postdoctoral fellow, Dr Seda Araz Igret from SIIRT University, Turkey. Since 2016 he has published a total number of six books, some of which are still under evaluation by Springer and Elsevier.

Time to prepare next generation of African professors 

This highly cited researcher is excited about collaborating with his students on projects such as these as he feels it is time for him to prepare the way for the next generation of African professors. Prof Atangana is ranked at No 219 in the world rankings and No 1 in South Africa by Research.com, a leading academic platform for researchers. 

According to the platform, which recently released the 2022 Edition of its Ranking of Top 1000 Scientists in the field of Mathematics, the ranking is based on the H-index metric provided by Microsoft Academic and includes only leading scientists with an H-index of at least 30 for academic publications in the field of Mathematics.

“Both books are important for me because they are first-time published books with my own students. There is a time to prepare the way for yourself and a time to prepare ways for the next generation. It is time for me to prepare the way for the next generation of African professors. I wish that the next time this list (https://research.com/scientists-rankings/mathematics/za) [is released] many of my students [will] appear,” says Prof Atangana.

About his book with Dr Igret, he says it presents the dynamic of COVID-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours, which resemble power law, fading memory, crossover, and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the world. 

“The content coverage includes a brief history of COVID-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes,” says Prof Atangana.

Mathematical analysis of Groundwater Flow Models serves as a valuable resource for graduate and PhD students as well as researchers working within the field of groundwater modelling, says Prof Atangana. It includes features such as:
• Modified numerical and analytical methods for solving new and modified models for groundwater flow and transport 
• New flow and transform models for groundwater transport in complex geological formations 
• Examination of fractal and crossover behaviours and their mathematical formulations

Top-ranking scientist 

Prof Atangana was also recently elected as a fellow of The World Academy of Sciences (TWAS) and received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A Hamdan, 2020) on 1 November 2021.

Very recently, he was also ranked No 1 in the world in Mathematics, No 186 in the world in all the fields, and No 1 in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Fewer than 6 200 or 0.1% of the world’s researchers were included on this list in 2019, 2020 and 2021, with fewer than 10 of the scientists hailing from South Africa. 

“While my name is ranked No 1 in South Africa and No 219 in the world, this shows the impact of my research that has been done since 2013. It is worth noting that this ranking disadvantages younger researchers. For example, I got my first publication in 2013 but the researcher who was ranked No 1 started in 1972. To make the ranking fair, the total H-index should be divided by the number of years of publication. I am very proud to see that despite this disadvantage I am still topping in South Africa and am No 219 in the world.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept