Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 March 2022 | Story Andre Damons | Photo Sonia Small (Kaleidoscope Studios)
Prof Abdon Antangana
Prof Abdon Atangana, a Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS) and South Africa’s top-ranked scientist in Mathematics, wants to prepare the next generation of African professors.

A new book written by Prof Abdon Atangana, Professor of Applied Mathematics at the Institute for Groundwater Studies at the University of the Free State (UFS), in collaboration with one of his students, on the flow of groundwater, suggests several new and modified models to better predict anomalous behaviours of the flow and the movement of pollution within complex geological formations.

Mathematical Analysis of Groundwater Flow Models is one of two books Prof Atangana published recently that he wrote with his students. The other, Fractional Stochastic Differential Equations: Applications to Covid-19 Modeling, provides a thorough conversation on the underpinnings of COVID-19 spread modelling. He wrote the book with a postdoctoral fellow, Dr Seda Araz Igret from SIIRT University, Turkey. Since 2016 he has published a total number of six books, some of which are still under evaluation by Springer and Elsevier.

Time to prepare next generation of African professors 

This highly cited researcher is excited about collaborating with his students on projects such as these as he feels it is time for him to prepare the way for the next generation of African professors. Prof Atangana is ranked at No 219 in the world rankings and No 1 in South Africa by Research.com, a leading academic platform for researchers. 

According to the platform, which recently released the 2022 Edition of its Ranking of Top 1000 Scientists in the field of Mathematics, the ranking is based on the H-index metric provided by Microsoft Academic and includes only leading scientists with an H-index of at least 30 for academic publications in the field of Mathematics.

“Both books are important for me because they are first-time published books with my own students. There is a time to prepare the way for yourself and a time to prepare ways for the next generation. It is time for me to prepare the way for the next generation of African professors. I wish that the next time this list (https://research.com/scientists-rankings/mathematics/za) [is released] many of my students [will] appear,” says Prof Atangana.

About his book with Dr Igret, he says it presents the dynamic of COVID-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours, which resemble power law, fading memory, crossover, and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the world. 

“The content coverage includes a brief history of COVID-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes,” says Prof Atangana.

Mathematical analysis of Groundwater Flow Models serves as a valuable resource for graduate and PhD students as well as researchers working within the field of groundwater modelling, says Prof Atangana. It includes features such as:
• Modified numerical and analytical methods for solving new and modified models for groundwater flow and transport 
• New flow and transform models for groundwater transport in complex geological formations 
• Examination of fractal and crossover behaviours and their mathematical formulations

Top-ranking scientist 

Prof Atangana was also recently elected as a fellow of The World Academy of Sciences (TWAS) and received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A Hamdan, 2020) on 1 November 2021.

Very recently, he was also ranked No 1 in the world in Mathematics, No 186 in the world in all the fields, and No 1 in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Fewer than 6 200 or 0.1% of the world’s researchers were included on this list in 2019, 2020 and 2021, with fewer than 10 of the scientists hailing from South Africa. 

“While my name is ranked No 1 in South Africa and No 219 in the world, this shows the impact of my research that has been done since 2013. It is worth noting that this ranking disadvantages younger researchers. For example, I got my first publication in 2013 but the researcher who was ranked No 1 started in 1972. To make the ranking fair, the total H-index should be divided by the number of years of publication. I am very proud to see that despite this disadvantage I am still topping in South Africa and am No 219 in the world.”

News Archive

Fire as a management tool questionable in arid and semi-arid grassland areas
2015-03-24

Wild fire in the grassland
Photo: Supplied


The influence of fire on the ecosystem in the higher rainfall ‘‘sour’’ grassland areas of southern Africa has been well established. However, less information is available for arid and semi-arid ‘‘sweet’’ grassland areas, says Prof Hennie Snyman, Professor in the Department of Animal, Wildlife, and Grassland Sciences, about his research on the short-term impact of fire on the productivity of grasslands in semi-arid areas.

Sour and sweet grassland areas can be defined as receiving either higher or lower than approximately 600 mm of rainfall respectively. In quantifying the short-term impact of fire on the productivity of grasslands in semi-arid areas, a South African case study (experimental plot data) was investigated.

“Burned grassland can take at least two full growing seasons to recover in terms of above- and below-ground plant production and of water-use efficiency (WUE). The initial advantage in quality (crude protein) accompanying fire does not neutralise the reduction in half of the above-ground production and poor WUE occurring in the first season following the fire.

“The below-ground growth is more sensitive to burning than above-ground growth. Seasonal above-ground production loss to fire, which is a function of the amount and distribution of rainfall, can vary between 238 and 444 kg ha -1 for semi-arid grasslands. The importance of correct timing in the utilisation of burned semi-arid grassland, with respect to sustained high production, cannot be overemphasised,” said Prof Snyman.

In arid and semi-arid grassland areas, fire as a management tool is questionable if there is no specific purpose for it, as it can increase ecological and financial risk management in the short term.

Prof Snyman said: “More research is needed to quantify the impact of runaway fires on both productivity and soil properties, in terms of different seasonal climatic variations. The information to date may already serve as valuable guidelines regarding grassland productivity losses in semi-arid areas. These results can also provide a guideline in claims arising from unforeseen fires, in which thousands of rands can be involved, and which are often based on unscientific evidence.”

For more information or enquiries contact news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept