Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 March 2022 | Story Andre Damons | Photo Sonia Small (Kaleidoscope Studios)
Prof Abdon Antangana
Prof Abdon Atangana, a Professor of Applied Mathematics in the Institute for Groundwater Studies at the University of the Free State (UFS) and South Africa’s top-ranked scientist in Mathematics, wants to prepare the next generation of African professors.

A new book written by Prof Abdon Atangana, Professor of Applied Mathematics at the Institute for Groundwater Studies at the University of the Free State (UFS), in collaboration with one of his students, on the flow of groundwater, suggests several new and modified models to better predict anomalous behaviours of the flow and the movement of pollution within complex geological formations.

Mathematical Analysis of Groundwater Flow Models is one of two books Prof Atangana published recently that he wrote with his students. The other, Fractional Stochastic Differential Equations: Applications to Covid-19 Modeling, provides a thorough conversation on the underpinnings of COVID-19 spread modelling. He wrote the book with a postdoctoral fellow, Dr Seda Araz Igret from SIIRT University, Turkey. Since 2016 he has published a total number of six books, some of which are still under evaluation by Springer and Elsevier.

Time to prepare next generation of African professors 

This highly cited researcher is excited about collaborating with his students on projects such as these as he feels it is time for him to prepare the way for the next generation of African professors. Prof Atangana is ranked at No 219 in the world rankings and No 1 in South Africa by Research.com, a leading academic platform for researchers. 

According to the platform, which recently released the 2022 Edition of its Ranking of Top 1000 Scientists in the field of Mathematics, the ranking is based on the H-index metric provided by Microsoft Academic and includes only leading scientists with an H-index of at least 30 for academic publications in the field of Mathematics.

“Both books are important for me because they are first-time published books with my own students. There is a time to prepare the way for yourself and a time to prepare ways for the next generation. It is time for me to prepare the way for the next generation of African professors. I wish that the next time this list (https://research.com/scientists-rankings/mathematics/za) [is released] many of my students [will] appear,” says Prof Atangana.

About his book with Dr Igret, he says it presents the dynamic of COVID-19 spread behaviour worldwide. It is noticed that the spread dynamic followed process with nonlocal behaviours, which resemble power law, fading memory, crossover, and stochastic behaviours. Fractional stochastic differential equations are therefore used to model spread behaviours in different parts of the world. 

“The content coverage includes a brief history of COVID-19 spread worldwide from December 2019 to September 2021, followed by statistical analysis of collected data for infected, death and recovery classes,” says Prof Atangana.

Mathematical analysis of Groundwater Flow Models serves as a valuable resource for graduate and PhD students as well as researchers working within the field of groundwater modelling, says Prof Atangana. It includes features such as:
• Modified numerical and analytical methods for solving new and modified models for groundwater flow and transport 
• New flow and transform models for groundwater transport in complex geological formations 
• Examination of fractal and crossover behaviours and their mathematical formulations

Top-ranking scientist 

Prof Atangana was also recently elected as a fellow of The World Academy of Sciences (TWAS) and received the World Academy of Sciences Award for Mathematics (TWAS -Mohammad A Hamdan, 2020) on 1 November 2021.

Very recently, he was also ranked No 1 in the world in Mathematics, No 186 in the world in all the fields, and No 1 in Africa in all the fields, according to the Stanford list of 2% single-year table.

He was also named among the top 1% of scientists on the global Clarivate Web of Science list. Fewer than 6 200 or 0.1% of the world’s researchers were included on this list in 2019, 2020 and 2021, with fewer than 10 of the scientists hailing from South Africa. 

“While my name is ranked No 1 in South Africa and No 219 in the world, this shows the impact of my research that has been done since 2013. It is worth noting that this ranking disadvantages younger researchers. For example, I got my first publication in 2013 but the researcher who was ranked No 1 started in 1972. To make the ranking fair, the total H-index should be divided by the number of years of publication. I am very proud to see that despite this disadvantage I am still topping in South Africa and am No 219 in the world.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept