Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 March 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Drone training
Khanyisile Khanyi, trainer at Alpha One Aviation, and Alinah Nomthandazo Bokopt from Free State News, at the drone awareness training presented on the UFS South Campus.

A mixed group of 20 young people attended a Digital Television Broadcasting training session on the South Campus of the University of the Free State (UFS). The excited group of students received their first practical on drone awareness. 

The UFS South Campus was the venue for this session, which formed part of a pilot project for drone awareness training. If the training curriculum is approved by the aviation accrediting body, the UFS Division of Social Responsibility Projects will collaborate with Sollywood South Africa to present a six-month course consisting of theory and practical sessions, including a focus on heritage and culture, converting from analogue to digital format, drone conferencing, creative writing, safety management, entrepreneurship, event management, and drone manufacturing. 

Promoting self-employment

Campus Principal, Dr Marinkie Madiope, is thrilled about the possibilities of this pilot development opportunity. “Not many people in South Africa manufacture drones,” she says.

The university will ensure that the training is fit for purpose and that the qualification is recognised. “With its focus on impact and visibility in 2022, the UFS will impact disadvantaged communities by equipping the unemployed youth with the necessary skills to create their own employment.”

The service providers will source funding from the MICTSETA (Media, Information and Communication Technologies Sector Education and Training Authority) to formalise the course content. 

Investment in scarce skills

Thandeka Mosholi, Head: Social Responsibility, Enterprise, and Community Engagement on the UFS South Campus, says this project will not only contribute to job creation, but it will also bridge the gap in areas where there is a shortage of skills, such as drone manufacturing. “The skills obtained through this project also align with the Fourth Industrial Revolution,” Mosholi adds. 

Dr Zama Qampi, Executive Producer at Sollywood South Africa, says the company will erect a warehouse in the Free State later this year, specifically for the drone project.


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept