Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Liezel Herselman Inuagural Lecture
At the inaugural lecture were from the left: Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, Prof Liezel Herselman, Dr Adré Minnaar-Ontong, Senior Lecturer in the Department of Plant Sciences and Subject Head of Plant Breeding, and Dr Molapo Qhobela, Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact.

Prof Liezel Herselman, Academic Head of the Department of Plant Sciences at the University of the Free State (UFS),) delivered her inaugural lecture on the Bloemfontein Campus this week (24 March 2022). The theme of the lecture was the ongoing battle against destructive cereal killers. 

With 28 years of extensive experience as a researcher, her work focuses on marker-assisted disease resistance breeding in wheat within a South African context. When she joined the UFS in 2004, Prof Herselman decided to apply her research expertise in marker-assisted breeding to the problems faced by wheat producers in the Free State and Northern Cape. The Free State is one of the major dryland wheat production areas in South Africa, while irrigation wheat is produced along the major rivers in the Northern Cape. 

Protection against fungal diseases

Concentrating specifically on Fusarium head blight (or wheat scab) and three rust diseases – leaf rust, stem rust, and stripe rust – she has done work to provide wheat plants with ‘tools’ to protect themselves against these fungal diseases.

According to Prof Herselman, there are many genes available in different wheat genotypes and related grass species that provide excellent protection against various races of these diseases. “Some of these genes provide protection or resistance from the seedling stage, while others provide resistance at the adult plant stage. We are thus aiming to combine as many of these genes as possible into a single wheat cultivar, without compromising yield and bread-making quality.”

She says the genes are combined by making crosses between resistant and susceptible cultivars or lines. Conventionally, through a time-consuming process, the incorporation of these genes is tested in the greenhouse and field by infecting plants with the disease to see which plants are resistant and which are not.

They can, however, follow the transfer of these genes to newly developed lines by applying molecular markers. Prof Herselman explains: “A molecular marker is a genomic fragment linked to the gene, which we can follow in the offspring we create from the crosses using different DNA techniques in the laboratory. This enables us to select new wheat lines that contain the highest number of resistance genes. The identified best lines are then used in further crosses and/or released as pre-breeding lines to commercial wheat breeding companies.”

Impact on food security

Her research has an impact on society by providing food security to both commercial and small-scale producers, as well as the end users of wheat (people buying bread and other wheat products). As researcher, it is also important for her to send out students to the workplace who can continue with this task in future.

Prof Herselman believes that when cultivars with fungal-disease tolerance or resistance are released and used by producers, it not only reduces the cost of spraying against diseases, but also increases yields by protecting the crop against fungal diseases. “We live in a world where the population is increasing daily, but land available for agriculture is not increasing and some areas are even lost due to urban development. Increasing yield in available production areas will thus have a positive impact on food security,” she says.

Besides contributing to the country’s food security, she takes pleasure in every aspect of her work. Although she misses the hands-on part of the work as academic head of the department and getting her hands dirty, she still enjoys managing the different research projects (from the conceptualisation phase to data analysis and publishing of results). The part she loves the most is to see the growth in her postgraduate students – from the moment they enter the laboratory for the first time until the day they walk out of the laboratory with their degrees. 

“It adds purpose to my life knowing that I have made a difference in a student’s life and equipped him or her with the necessary tools to be successful in the marketplace. Being able to share your knowledge is a gift, but with that gift comes a lot of responsibility as well. I am, however, up for the challenge,” concludes Prof Herselman. 

News Archive

Science is diversifying the uses of traditional medicines
2017-07-17

Description: Dr Motlalepula Matsabisa  Tags: traditional medicines, Indigenous Knowledge Systems, Dr Motlalepula Matsabisa, Malaria, priority disease  

Dr Motlalepula Matsabisa.
Photo: Anja Aucamp

According to the World Health Organisation, a large majority of the African population are making use of traditional medicines for health, socio-cultural, and economic purposes. In Africa, up to 80% of the population uses traditional medicines for primary healthcare.

The Indigenous Knowledge Systems (IKS) was identified as a lead programme under the directorship of Dr Motlalepula Matsabisa. Research undertaken by the IKS Lead Programme focuses on some key priority diseases of the country and region – including malaria, HIV, cancer, and diabetes.
 
Not just a plant or tree

Malaria is a priority disease and is prevalent in rural and poor areas, resulting in many traditional health practitioners claiming to treat and cure the disease. There may well be substance to these claims, since as much as 30% of the most effective current prescription medicines are derived from plants.  For instance, chloroquine, artemisinin for malaria, Metformin for diabetes, Vincristine and Vinblastine for cancer, are plant-derived drugs.  

Dr Matsabisa’s current research is investigating a South African medicinal plant that has been shown to have in vitro antiplasmodial activity, with subsequent isolation and characterisation of novel non-symmetrical sesquiterpene lactone compounds offering antimalarial activity. These novel compounds are now patented in South Africa and worldwide. This research is part of the UFS and South Africa’s strive to contribute to the regional and continental malaria problem. The UFS are thus far the only university that has been granted a permit by the Medicines Control Council to undertake research on cannabis and its potential health benefits.

“All of these projects are aimed
at adding value through the scientific
research of medicinal plants, which
can be used for treating illnesses,
diseases, and ailments.”

Recognition well deservedThrough Dr Matsabisa’s research input and contributions to the development of the pharmacology of traditional medicines, he recently became the first recipient of the International Prof Tuhinadrin Sen Award from the International Society of Ethnopharmacology (ISE) and the Society of Ethnopharmacology in India. ISE recognises outstanding contributions by researchers, scientists, and technologists in the area of medicinal plant research and ethnopharmacology internationally.

More recently, Dr Matsabisa undertook research projects funded by the National Research Foundation, as well as the Department of Science and Technology, on cancer, gangrene, and diabetes. He is also involved in a community project to develop indigenous teas with the community. He says, “All of these projects are aimed at adding value through the scientific research of medicinal plants, which can be used for treating illnesses, diseases, and ailments”.

Dr Matsabisa has worked with many local and international scientists on a number of research endeavours. He is grateful to his colleagues from the Department of Pharmacology in the Faculty of Health Sciences, who are dedicated to science research and the research of traditional medicines. The IKS unit also received immense support from the Directorate of Research Development.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept