Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Liezel Herselman Inuagural Lecture
At the inaugural lecture were from the left: Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, Prof Liezel Herselman, Dr Adré Minnaar-Ontong, Senior Lecturer in the Department of Plant Sciences and Subject Head of Plant Breeding, and Dr Molapo Qhobela, Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact.

Prof Liezel Herselman, Academic Head of the Department of Plant Sciences at the University of the Free State (UFS),) delivered her inaugural lecture on the Bloemfontein Campus this week (24 March 2022). The theme of the lecture was the ongoing battle against destructive cereal killers. 

With 28 years of extensive experience as a researcher, her work focuses on marker-assisted disease resistance breeding in wheat within a South African context. When she joined the UFS in 2004, Prof Herselman decided to apply her research expertise in marker-assisted breeding to the problems faced by wheat producers in the Free State and Northern Cape. The Free State is one of the major dryland wheat production areas in South Africa, while irrigation wheat is produced along the major rivers in the Northern Cape. 

Protection against fungal diseases

Concentrating specifically on Fusarium head blight (or wheat scab) and three rust diseases – leaf rust, stem rust, and stripe rust – she has done work to provide wheat plants with ‘tools’ to protect themselves against these fungal diseases.

According to Prof Herselman, there are many genes available in different wheat genotypes and related grass species that provide excellent protection against various races of these diseases. “Some of these genes provide protection or resistance from the seedling stage, while others provide resistance at the adult plant stage. We are thus aiming to combine as many of these genes as possible into a single wheat cultivar, without compromising yield and bread-making quality.”

She says the genes are combined by making crosses between resistant and susceptible cultivars or lines. Conventionally, through a time-consuming process, the incorporation of these genes is tested in the greenhouse and field by infecting plants with the disease to see which plants are resistant and which are not.

They can, however, follow the transfer of these genes to newly developed lines by applying molecular markers. Prof Herselman explains: “A molecular marker is a genomic fragment linked to the gene, which we can follow in the offspring we create from the crosses using different DNA techniques in the laboratory. This enables us to select new wheat lines that contain the highest number of resistance genes. The identified best lines are then used in further crosses and/or released as pre-breeding lines to commercial wheat breeding companies.”

Impact on food security

Her research has an impact on society by providing food security to both commercial and small-scale producers, as well as the end users of wheat (people buying bread and other wheat products). As researcher, it is also important for her to send out students to the workplace who can continue with this task in future.

Prof Herselman believes that when cultivars with fungal-disease tolerance or resistance are released and used by producers, it not only reduces the cost of spraying against diseases, but also increases yields by protecting the crop against fungal diseases. “We live in a world where the population is increasing daily, but land available for agriculture is not increasing and some areas are even lost due to urban development. Increasing yield in available production areas will thus have a positive impact on food security,” she says.

Besides contributing to the country’s food security, she takes pleasure in every aspect of her work. Although she misses the hands-on part of the work as academic head of the department and getting her hands dirty, she still enjoys managing the different research projects (from the conceptualisation phase to data analysis and publishing of results). The part she loves the most is to see the growth in her postgraduate students – from the moment they enter the laboratory for the first time until the day they walk out of the laboratory with their degrees. 

“It adds purpose to my life knowing that I have made a difference in a student’s life and equipped him or her with the necessary tools to be successful in the marketplace. Being able to share your knowledge is a gift, but with that gift comes a lot of responsibility as well. I am, however, up for the challenge,” concludes Prof Herselman. 

News Archive

Blood tests for players at FIFA Confederations Cup
2009-03-21

Football stars coming to South Africa to play in the FIFA Confederations Cup tournament in June will not only have their urine tested for illegal substances but their blood as well.

This will be the first time that blood samples from sportsmen or women will be tested in South Africa.

“Blood testing is a new regulation from the World Anti-Doping Agency (WADA) and will be implemented in our laboratory for the FIFA Confederations Cup in June,” according to Dr Pieter van der Merwe, Head of the SA Doping Control Laboratory at the University of the Free State (UFS), the only testing facility of its kind in Southern Africa.

Although urine will still be tested, blood tests have become compulsory, because the substances used by sports men and women are becoming more sophisticated.

“Some substances, such as the growth hormone, can more easily be detected in blood. It is more difficult to determine these kinds of substances in urine,” explained Dr Van der Merwe.

“We were contracted by the International Rugby Board (IRB) to conduct the testing for the 7’s World Cup Rugby Tournament that was recently held in Dubai and by FIFA to do the testing for the Confederations Cup this year as well as the 2010 World Cup. This demonstrates the confidence of International Sport Federations in the quality and standard of work produced by this facility at the UFS,” he said.

The results of all tests done for the national programme in South Africa are sent to the Institute for Drug Free Sport based in Cape Town from where it is reported to the various sports federations. However, the rugby and soccer results are reported directly to the IRB and FIFA respectively.

The move to incorporate blood tests in the testing process has resulted in the expansion of the facility’s infrastructure.

“A new extension will be built for us in the near future in order for us to accommodate the conducting of urine and blood testing,” says Dr van der Merwe.

Media Release
Issued by: Anton Fisher
Director: Strategic Communication
Tel: 051 401 2749
Cell: 072 207 8334
E-mail: fishera.stg@ufs.ac.za  
20 March 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept