Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Liezel Herselman Inuagural Lecture
At the inaugural lecture were from the left: Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, Prof Liezel Herselman, Dr Adré Minnaar-Ontong, Senior Lecturer in the Department of Plant Sciences and Subject Head of Plant Breeding, and Dr Molapo Qhobela, Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact.

Prof Liezel Herselman, Academic Head of the Department of Plant Sciences at the University of the Free State (UFS),) delivered her inaugural lecture on the Bloemfontein Campus this week (24 March 2022). The theme of the lecture was the ongoing battle against destructive cereal killers. 

With 28 years of extensive experience as a researcher, her work focuses on marker-assisted disease resistance breeding in wheat within a South African context. When she joined the UFS in 2004, Prof Herselman decided to apply her research expertise in marker-assisted breeding to the problems faced by wheat producers in the Free State and Northern Cape. The Free State is one of the major dryland wheat production areas in South Africa, while irrigation wheat is produced along the major rivers in the Northern Cape. 

Protection against fungal diseases

Concentrating specifically on Fusarium head blight (or wheat scab) and three rust diseases – leaf rust, stem rust, and stripe rust – she has done work to provide wheat plants with ‘tools’ to protect themselves against these fungal diseases.

According to Prof Herselman, there are many genes available in different wheat genotypes and related grass species that provide excellent protection against various races of these diseases. “Some of these genes provide protection or resistance from the seedling stage, while others provide resistance at the adult plant stage. We are thus aiming to combine as many of these genes as possible into a single wheat cultivar, without compromising yield and bread-making quality.”

She says the genes are combined by making crosses between resistant and susceptible cultivars or lines. Conventionally, through a time-consuming process, the incorporation of these genes is tested in the greenhouse and field by infecting plants with the disease to see which plants are resistant and which are not.

They can, however, follow the transfer of these genes to newly developed lines by applying molecular markers. Prof Herselman explains: “A molecular marker is a genomic fragment linked to the gene, which we can follow in the offspring we create from the crosses using different DNA techniques in the laboratory. This enables us to select new wheat lines that contain the highest number of resistance genes. The identified best lines are then used in further crosses and/or released as pre-breeding lines to commercial wheat breeding companies.”

Impact on food security

Her research has an impact on society by providing food security to both commercial and small-scale producers, as well as the end users of wheat (people buying bread and other wheat products). As researcher, it is also important for her to send out students to the workplace who can continue with this task in future.

Prof Herselman believes that when cultivars with fungal-disease tolerance or resistance are released and used by producers, it not only reduces the cost of spraying against diseases, but also increases yields by protecting the crop against fungal diseases. “We live in a world where the population is increasing daily, but land available for agriculture is not increasing and some areas are even lost due to urban development. Increasing yield in available production areas will thus have a positive impact on food security,” she says.

Besides contributing to the country’s food security, she takes pleasure in every aspect of her work. Although she misses the hands-on part of the work as academic head of the department and getting her hands dirty, she still enjoys managing the different research projects (from the conceptualisation phase to data analysis and publishing of results). The part she loves the most is to see the growth in her postgraduate students – from the moment they enter the laboratory for the first time until the day they walk out of the laboratory with their degrees. 

“It adds purpose to my life knowing that I have made a difference in a student’s life and equipped him or her with the necessary tools to be successful in the marketplace. Being able to share your knowledge is a gift, but with that gift comes a lot of responsibility as well. I am, however, up for the challenge,” concludes Prof Herselman. 

News Archive

UFS launches expansions to Biotechnology Building
2015-11-04

     

Biotechnology Building
Photo: Leonie Bolleurs

To support the strategic focus of the University of the Free State (UFS) on teaching and learning in the field of Biotechnology, the Department of Microbial, Biochemical, and Food Biotechnology introduced upgrades and additions to the value of R23 million to the existing Biotechnology Building on its Bloemfontein Campus. The funding was provided by the Department of Higher Education and Training.

The new section, together with renovations to the existing part of the Biotechnology Building, was opened on Thursday 29 October 2015.

The Department, consisting of three disciplines - Microbiology, Biochemistry, and Food Biotechnology - is extremely diverse. Two of the three disciplines – Microbiology and Biochemistry – are housed in the Biotechnology Building.

Additions and renovations to the Biotechnology Building include:
-    Four new research laboratories
-    Nine revamped research laboratories

      

At the launch of the Biotechnology Building were,
from the left: Nico Janse van Rensburg,
Senior Director: University Estates;
Maureen Khati, University Estates,
Prof Nicky Morgan, Vice Rector: Operations
and Ria Deysel, Director: Facilities Management.
Photo: Leonie Bolleurs

The work to the building will have dramatic effects on the quality, as well as the quantity, of postgraduate students. Given the national priority to deliver students, this is very important, particularly at the doctorate level.

Prof Koos Albertyn from the Department said these were the first renovations and expansions done to the building since 1 January 1990. “We welcome the extra space. Forty-six more postgraduate students can now be accommodated in the department,” he said.

Construction took place on the south-western corner of the existing building. Further developments to the building include:
-    Six new offices
-    A lecture hall for 70 students
-    Laboratories that can accommodate 56 postgraduate students

Prof Martie Smit, Academic Head of the Department, said: “This new and refurbished facility enables us to give our best. As academics, we are committed to doing our part in delivering high-quality education at both undergraduate and postgraduate levels to students envisaging a future in biotechnology.”

The James Charles du Preez Seminar Room was also opened at the event. The seminar room is dedicated to Prof Du Preez – who was Head of the Department from October 2002 until the end of 2014. He played a major role in raising funds for upgrading the Biotechnology Building, including the addition of a new wing.



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept