Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Liezel Herselman Inuagural Lecture
At the inaugural lecture were from the left: Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, Prof Liezel Herselman, Dr Adré Minnaar-Ontong, Senior Lecturer in the Department of Plant Sciences and Subject Head of Plant Breeding, and Dr Molapo Qhobela, Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact.

Prof Liezel Herselman, Academic Head of the Department of Plant Sciences at the University of the Free State (UFS),) delivered her inaugural lecture on the Bloemfontein Campus this week (24 March 2022). The theme of the lecture was the ongoing battle against destructive cereal killers. 

With 28 years of extensive experience as a researcher, her work focuses on marker-assisted disease resistance breeding in wheat within a South African context. When she joined the UFS in 2004, Prof Herselman decided to apply her research expertise in marker-assisted breeding to the problems faced by wheat producers in the Free State and Northern Cape. The Free State is one of the major dryland wheat production areas in South Africa, while irrigation wheat is produced along the major rivers in the Northern Cape. 

Protection against fungal diseases

Concentrating specifically on Fusarium head blight (or wheat scab) and three rust diseases – leaf rust, stem rust, and stripe rust – she has done work to provide wheat plants with ‘tools’ to protect themselves against these fungal diseases.

According to Prof Herselman, there are many genes available in different wheat genotypes and related grass species that provide excellent protection against various races of these diseases. “Some of these genes provide protection or resistance from the seedling stage, while others provide resistance at the adult plant stage. We are thus aiming to combine as many of these genes as possible into a single wheat cultivar, without compromising yield and bread-making quality.”

She says the genes are combined by making crosses between resistant and susceptible cultivars or lines. Conventionally, through a time-consuming process, the incorporation of these genes is tested in the greenhouse and field by infecting plants with the disease to see which plants are resistant and which are not.

They can, however, follow the transfer of these genes to newly developed lines by applying molecular markers. Prof Herselman explains: “A molecular marker is a genomic fragment linked to the gene, which we can follow in the offspring we create from the crosses using different DNA techniques in the laboratory. This enables us to select new wheat lines that contain the highest number of resistance genes. The identified best lines are then used in further crosses and/or released as pre-breeding lines to commercial wheat breeding companies.”

Impact on food security

Her research has an impact on society by providing food security to both commercial and small-scale producers, as well as the end users of wheat (people buying bread and other wheat products). As researcher, it is also important for her to send out students to the workplace who can continue with this task in future.

Prof Herselman believes that when cultivars with fungal-disease tolerance or resistance are released and used by producers, it not only reduces the cost of spraying against diseases, but also increases yields by protecting the crop against fungal diseases. “We live in a world where the population is increasing daily, but land available for agriculture is not increasing and some areas are even lost due to urban development. Increasing yield in available production areas will thus have a positive impact on food security,” she says.

Besides contributing to the country’s food security, she takes pleasure in every aspect of her work. Although she misses the hands-on part of the work as academic head of the department and getting her hands dirty, she still enjoys managing the different research projects (from the conceptualisation phase to data analysis and publishing of results). The part she loves the most is to see the growth in her postgraduate students – from the moment they enter the laboratory for the first time until the day they walk out of the laboratory with their degrees. 

“It adds purpose to my life knowing that I have made a difference in a student’s life and equipped him or her with the necessary tools to be successful in the marketplace. Being able to share your knowledge is a gift, but with that gift comes a lot of responsibility as well. I am, however, up for the challenge,” concludes Prof Herselman. 

News Archive

Mushrooms, from gourmet food for humans to fodder for animals
2016-12-19

Description: Mushroom research photo 2 Tags: Mushroom research photo 2 

From the UFS Department of Microbial Biochemical and
Food Biotechnology are, from left: Prof Bennie Viljoen,
researcher,
MSc student Christie van der Berg,
and PhD student Christopher Rothman
Photo: Anja Aucamp

Mushrooms have so many medicinal applications that humans have a substance in hand to promote long healthy lives. And it is not only humans who benefit from these macrofungi growing mostly in dark spaces.

“The substrate applied for growing the mushrooms can be used as animal fodder. Keeping all the medicinal values intact, these are transferred to feed goats as a supplement to their daily diet,” said Prof Bennie Viljoen, researcher in the Department of Microbial, Biochemical and Food Biotechnology at the UFS.

Curiosity and a humble start
“The entire mushroom project started two years ago as a sideline of curiosity to grow edible gourmet mushrooms for my own consumption. I was also intrigued by a friend who ate these mushrooms in their dried form to support his immune system, claiming he never gets sick. The sideline quickly changed when we discovered the interesting world of mushrooms and postgraduate students became involved.

“Since these humble beginnings we have rapidly expanded with the financial help of the Technology Transfer Office to a small enterprise with zero waste,” said Prof Viljoen. The research group also has many collaborators in the industry with full support from a nutraceutical company, an animal feed company and a mushroom growers’ association.

Prof Viljoen and his team’s mushroom research has various aspects.

Growing the tastiest edible mushrooms possible
“We are growing gourmet mushrooms on agricultural waste under controlled environmental conditions to achieve the tastiest edible mushrooms possible. This group of mushrooms is comprised of the King, Pink, Golden, Grey, Blue and Brown Oysters. Other than the research results we have obtained, this part is mainly governed by the postgraduate students running it as a business with the intention to share in the profit from excess mushrooms because they lack research bursaries. The mushrooms are sold to restaurants and food markets at weekends,” said Prof Viljoen.

Description: Mushroom research photo 1 Tags: Mushroom research photo 1 

Photo: Anja Aucamp

Natural alternative for the treatment of various ailments
“The second entity of research encompasses the growth and application of medicinal mushrooms. Throughout history, mushrooms have been used as a natural alternative for the treatment of various ailments. Nowadays, macrofungi are known to be a source of bioactive compounds of medicinal value. These include prevention or alleviation of heart disease, inhibition of platelet aggregation, reduction of blood glucose levels, reduction of blood cholesterol and the prevention or alleviation of infections caused by bacterial, viral, fungal and parasitic pathogens. All of these properties can be enjoyed by capsulation of liquid concentrates or dried powdered mushrooms, as we recently confirmed by trial efforts which are defined as mushroom nutriceuticals,” he said.

Their research focuses on six different medicinal genera, each with specific medicinal attributes:
1.    Maitake: the most dominant property exhibited by this specific mushroom is the reduction of blood pressure as well as cholesterol. Other medicinal properties include anticancer, antidiabetic and immunomodulating while it may also improve the health of HIV patients.
2.    The Turkey Tail mushroom is known for its activity against various tumours and viruses as well as its antioxidant properties.
3.    Shiitake mushrooms have antioxidant properties and are capable of lowering blood serum cholesterol (BSC). The mushroom produces a water-soluble polysaccharide, lentinan, considered to be responsible for anticancer, antimicrobial and antitumour properties.
4.    The Grey Oyster mushroom has medicinal properties such as anticholesterol, antidiabetic, antimicrobial, antioxidant, antitumour and immunomodulatory properties.
5.    Recently there has been an increased interest in the Lion’s Mane mushroom which contains nerve growth factors (NGF) and may be applied as a possible treatment of Alzheimer’s disease as this compound seems to have the ability to re-grow and rebuild myelin by stimulating neurons.
6.    Reishi mushrooms are considered to be the mushrooms with the most medicinal properties due to their enhancing health effects such as treatment of cancer, as well as increasing longevity, resistance and recovery from diseases.


Description: Mushroom research photo 3 Tags: Mushroom research photo 3


Valuable entity for the agricultural sector
Another research focus is the bio-mushroom application phenome, to break down trees growing as encroaching plants. This research is potentially very valuable for the agricultural sector in the areas where Acacia is an encroaching problem. With this process, waste products are upgraded to a usable state. “It is therefore, possible to convert woody biomass with a low digestibility and limited availability of nutrients into high-quality animal fodder. By carefully selecting the right combination of fungus species to ferment agro-wastes, a whole host of advantages could become inherently part of the substrate. Mushrooms could become a biotechnological tool used to ‘inject’ the substrate that will be fed to animals with nutrition and/or medicine as the need and situation dictates,” said Prof Viljoen.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept