Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2022 | Story Leonie Bolleurs | Photo Charl Devenish
Prof Liezel Herselman Inuagural Lecture
At the inaugural lecture were from the left: Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences, Prof Liezel Herselman, Dr Adré Minnaar-Ontong, Senior Lecturer in the Department of Plant Sciences and Subject Head of Plant Breeding, and Dr Molapo Qhobela, Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact.

Prof Liezel Herselman, Academic Head of the Department of Plant Sciences at the University of the Free State (UFS),) delivered her inaugural lecture on the Bloemfontein Campus this week (24 March 2022). The theme of the lecture was the ongoing battle against destructive cereal killers. 

With 28 years of extensive experience as a researcher, her work focuses on marker-assisted disease resistance breeding in wheat within a South African context. When she joined the UFS in 2004, Prof Herselman decided to apply her research expertise in marker-assisted breeding to the problems faced by wheat producers in the Free State and Northern Cape. The Free State is one of the major dryland wheat production areas in South Africa, while irrigation wheat is produced along the major rivers in the Northern Cape. 

Protection against fungal diseases

Concentrating specifically on Fusarium head blight (or wheat scab) and three rust diseases – leaf rust, stem rust, and stripe rust – she has done work to provide wheat plants with ‘tools’ to protect themselves against these fungal diseases.

According to Prof Herselman, there are many genes available in different wheat genotypes and related grass species that provide excellent protection against various races of these diseases. “Some of these genes provide protection or resistance from the seedling stage, while others provide resistance at the adult plant stage. We are thus aiming to combine as many of these genes as possible into a single wheat cultivar, without compromising yield and bread-making quality.”

She says the genes are combined by making crosses between resistant and susceptible cultivars or lines. Conventionally, through a time-consuming process, the incorporation of these genes is tested in the greenhouse and field by infecting plants with the disease to see which plants are resistant and which are not.

They can, however, follow the transfer of these genes to newly developed lines by applying molecular markers. Prof Herselman explains: “A molecular marker is a genomic fragment linked to the gene, which we can follow in the offspring we create from the crosses using different DNA techniques in the laboratory. This enables us to select new wheat lines that contain the highest number of resistance genes. The identified best lines are then used in further crosses and/or released as pre-breeding lines to commercial wheat breeding companies.”

Impact on food security

Her research has an impact on society by providing food security to both commercial and small-scale producers, as well as the end users of wheat (people buying bread and other wheat products). As researcher, it is also important for her to send out students to the workplace who can continue with this task in future.

Prof Herselman believes that when cultivars with fungal-disease tolerance or resistance are released and used by producers, it not only reduces the cost of spraying against diseases, but also increases yields by protecting the crop against fungal diseases. “We live in a world where the population is increasing daily, but land available for agriculture is not increasing and some areas are even lost due to urban development. Increasing yield in available production areas will thus have a positive impact on food security,” she says.

Besides contributing to the country’s food security, she takes pleasure in every aspect of her work. Although she misses the hands-on part of the work as academic head of the department and getting her hands dirty, she still enjoys managing the different research projects (from the conceptualisation phase to data analysis and publishing of results). The part she loves the most is to see the growth in her postgraduate students – from the moment they enter the laboratory for the first time until the day they walk out of the laboratory with their degrees. 

“It adds purpose to my life knowing that I have made a difference in a student’s life and equipped him or her with the necessary tools to be successful in the marketplace. Being able to share your knowledge is a gift, but with that gift comes a lot of responsibility as well. I am, however, up for the challenge,” concludes Prof Herselman. 

News Archive

Inaugural lecture: World on verge of agricultural revolution
2008-05-19

A changing economic climate and new technology will see to a number of interesting changes in the livestock industry in the next few years. This is according to Prof. Frikkie Neser of the Department of Animal and Wildlife and Grassland Sciences, who delivered his inaugural lecture at the UFS on the subject: “The quest for a superior animal”.

Prof. Neser focused on the future of animal breeding in the next few decades.

He said the world, but especially South Africa, stand on the verge of a revolution in the agriculture sector. The whole production scenario will probably change. The high fuel and food prices are the two biggest factors that will play a role.

“Increasing fuel prices opened the door for the production of bio-fuel. The fuel industry is in direct competition with humans and the livestock industry for the same resource that result in unbelievable high prices for maize, sunflower and soya. These prices can further increase with the worldwide shortage of food,” he said.

More profitable breeds could take the place of existing breeds because of the big increase in input costs, he said. “Selection for more effective, and not maximum production, will became more important.

“There are also indications of pressure on feed lots. If this industry downsizes, it could lead to a total turnaround in the beef industry. The feed lots prefer a later maturing animal that can put on a lot of weight before fat is laid down. If this industry declines, early maturing breeds and some of the synthetic breeds, as well as crossbreeding with early maturing breeds, will play a more prominent role in the meat industry.

“This will also lead to a decline in the total number of animals in order to prevent overgrazing. This can result in an increase in imports from neighbouring countries and especially Brazil, where production costs are much lower.

“One way to increase the profitability of meat production is to utilise niche markets. There is world-wide a shift to more natural products. The demand for grass-fed beef drastically increased. According to research it is healthier than meat from feed lots and usually free of hormones and antibiotics. If factors such as traceability are put in place, this could be a very profitable niche mark for the South African meat industry,” he said.

Prof. Neser also said: “In order for breeding societies to survive they need to increase the number of members and the animals that are being registered. This they do by replacing the word stud with recorded animals. Hereby they open the door for excellent commercial animals to become part of the seed-stock industry. Another benefit is that especially in the smaller breeds more information becomes available, resulting in more accurate breeding values.”

Prof. Frikkie Neser.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept