Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2022 | Story Lacea Loader

On 14 March 2022, the Bloemfontein and Qwaqwa Campuses of the University of the Free State (UFS) will return to face-to-face classes as per the teaching plans for 2022. The faculties that are continuing with face-to-face classes in the first term (i.e., the Faculties of Natural and Agricultural Sciences and Health Sciences), will remain face-to-face during the week of 7 to 11 March 2022.

The decision to resume face-to-face classes follows previous communiques in February 2022 about the temporary closure of the Qwaqwa Campus due to violent protest action, and the continuation of the academic programme on the Bloemfontein Campus in a differentiated and flexible online delivery mode due to challenges experienced with disruption of classes. 
 
The return to face-to-face classes on 14 March 2022 also follows the reopening of and resumption of online classes on the Qwaqwa Campus on 28 February 2022, and the resumption of some face-to-face activity on the Qwaqwa Campus as from 7 March 2022.

As a residential institution, it is important for students to return to campus, for the academic programme to continue as planned, and for activities to return to normal.
 
Students will be informed by their respective faculties as to how the academic programme will be adapted for face-to-face classes, including instances where classes will remain online.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept