Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2022 | Story Lacea Loader

On 14 March 2022, the Bloemfontein and Qwaqwa Campuses of the University of the Free State (UFS) will return to face-to-face classes as per the teaching plans for 2022. The faculties that are continuing with face-to-face classes in the first term (i.e., the Faculties of Natural and Agricultural Sciences and Health Sciences), will remain face-to-face during the week of 7 to 11 March 2022.

The decision to resume face-to-face classes follows previous communiques in February 2022 about the temporary closure of the Qwaqwa Campus due to violent protest action, and the continuation of the academic programme on the Bloemfontein Campus in a differentiated and flexible online delivery mode due to challenges experienced with disruption of classes. 
 
The return to face-to-face classes on 14 March 2022 also follows the reopening of and resumption of online classes on the Qwaqwa Campus on 28 February 2022, and the resumption of some face-to-face activity on the Qwaqwa Campus as from 7 March 2022.

As a residential institution, it is important for students to return to campus, for the academic programme to continue as planned, and for activities to return to normal.
 
Students will be informed by their respective faculties as to how the academic programme will be adapted for face-to-face classes, including instances where classes will remain online.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept