Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 March 2022 | Story Leonie Bolleurs | Photo Supplied
Dr Edson Vengeai
Dr Edson Vengesai believes accreditation from and affiliation with the CFA Institute signals to potential students, employers, and the marketplace that the UFS BCom Investment Management and Banking curriculum is well-suited to prepare students for a brighter career in the investment field.

The University of the Free State (UFS) Faculty of Economic and Management Sciences was recently welcomed into the world’s largest association of investment professionals, the CFA Institute University Affiliation Programme. The CFA designation is globally recognised as the gold standard in the investment field.

Accreditation by this respected source of knowledge in investment and portfolio management reflects the rigour and value of the UFS BCom Investment Management and Banking (IMB) degree – housed in the more than a century-old Department of Economics and Finance. 

According to Dr Edson Vengesai, Senior Lecturer in the Department of Economics and Finance, the BCom IMB positions students well to obtain the Chartered Financial Analyst (CFA®) charter, which has become the world's most respected and recognised investment credential. Including the UFS, only five universities in South Africa are affiliated to the CFA Institute. 

Most respected investment designation

Members who have attained the prestigious designation ‘Chartered Financial Analyst’, hold prominent roles in leading investment firms in financial centres worldwide. “Becoming a charter holder is a defining moment for many investment professionals, which exemplifies a robust understanding of advanced investment analysis and real-world portfolio management skills,” he says.  

Dr Vengesai states that with this affiliation from the CFA Institute, the BCom IMB degree has been acknowledged as incorporating at least 70% of the CFA Program Candidate Body of Knowledge (CBOK) within the programme. Moreover, it also places emphasis on the CFA Institute Code of Ethics and Standards of Professional Conduct. He believes preparing graduates who are ethically grounded and ready to execute their duties in an ethical and professional manner is a major necessity in the financial analysis and investment field.

Writing from London in the United Kingdom, Director of University Relations at the CFA Institute, Peter Watkins, states: “The UFS BCom in Investment Management and Banking is a rigorous programme that will be of great benefit to students entering the investment profession.”

Dean of the Faculty of Economic and Management Sciences and Pro-Vice-Chancellor: Poverty, Inequality and Economic Development, Prof Philippe Burger, adds that the accreditation aligns with the faculty’s drive to create opportunities for its students to not only pursue excellence, but also to compare with the best in the industry, locally and on an international basis. He says the BCom in Investment Management and Banking is one of a range of cutting-edge, industry-relevant, and scientifically rigorous degrees offered by the Faculty of Economic and Management Sciences. “Quite a number of the faculty’s programmes are accredited by professional bodies, with accreditation by the CFA being the latest.”

Taking the financial sector to new heights

Through the CFA programme, the UFS will also be eligible to receive CFA Programme Student Scholarships each year, which will contribute to the much-needed skill set of well-grounded financial analysts who can take the financial sector to new heights. “Aligning our degree programme with the CFA curriculum will equip our students with the kind of expertise and real-world skills in investment analysis that will help set them apart from other institutions and peers,” adds Dr Vengesai, who also aims to produce a breed of innovators, critical thinkers, and producers of information.

“The affiliation signals to potential students, employers, and the marketplace that the UFS BCom Investment Management and Banking curriculum is closely tied to professional practices and is well-suited to prepare students for a brighter career in the investment field,” Dr Vengesai concludes. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept