Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2022 | Story Rulanzen Martin | Photo Supplied
Jon Kehrer
Jon Kehrer is a prolific academic and scholar. He also spent a few years teaching English in the Middle East.

It was a former professor who influenced American scholar Jon Kehrer to further his academic journey with the Department of Hebrew at the University of the Free State (UFS). And it was at the UFS where he recently graduated cum laude with a master’s degree in Hebrew, and was named recipient of the Dean’s Medal. 

Although he never expected to receive the Dean’s Medal, he is very glad – and somewhat relieved – that his dissertation made it through the examiners. “I never anticipated receiving this award. It makes me even more grateful for the strong Hebrew Department at UFS, and their rigorous standards for their students,” Kehrer says. 

“I wish I had been able to attend the graduation ceremony, but the circumstances of the semester just did not allow it.” Kehrer is currently teaching in the areas of the Old Testament and Biblical Languages at the Ozark Christian College (OCC) in Missouri, USA. In addition to his UFS qualifications Kehrer also holds a Bachelor of Theology qualification from the OCC. “I love the opportunity to invest in students and help them see new perspectives,” he says. 

UFS Hebrew a firm foundation for a solid academic career  

“I was looking for a high-quality and challenging programme that was flexible, especially since I work full-time and have a large family,” Kehrer says, as he recalls how he initially decided to become part of the UFS. He remembers fondly how Dr Kevin Chau, senior lecturer in Hebrew at the UFS, motivated and supported him when he first enrolled for the BA Honours programme. 

It is also a testament that the Department of Hebrew has made an impact internationally for the quality of its academic offerings. “Dr Chau helped me to think about how what I was learning would have an impact on my research and teaching in the future, and he was always quick to provide thorough and constructive feedback on my work,” Kehrer says.  

Once enrolled for the master’s programme it was initially difficult to know which direction to pursue and what topic to research, but the guidance and support of his two advisors, Prof Cynthia Miller-Naude and Prof Jacobus Naude, was “very helpful”.

“They never dictated what paths I should pursue, but they listened carefully and provided expert guidance to help me choose the path that would best suit my interests and the needs of the field,” he says. 

It was this support from the Department of Hebrew and its excellent reputation that came full circle when Kehrer was named Dean’s Medal recipient for achieving the highest marks of any student in a master’s qualification in the UFS Faculty of The Humanities. 

Dissertation a closer look at verbs in Biblical Hebrew 

His dissertation focused on Biblical Hebrew and how the object of a verb appears in various ways. “Sometimes an object appears by itself, but sometimes it can have a preposition or a two-consonant Biblical Hebrew particle along with it. Many Bible translations treat all these objects the same,” he says. “I wanted to try to understand why these variations occurred, so I looked at how different sentence elements might contribute to the variation. It was a fascinating study!” 
 
Kehrer believes it is important for university students to continue studying classical subjects like Hebrew. “I think we can all learn much from those who have gone before us, and so much wisdom and insight is connected to these ancient Biblical Hebrew texts, texts that would be inaccessible to us without translation,” he says. 

“I also think classical disciplines can help train students to think well and to read critically – essential skills for living in today’s ever-changing world.”  

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept