Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2022 | Story Rulanzen Martin | Photo Supplied
Jon Kehrer
Jon Kehrer is a prolific academic and scholar. He also spent a few years teaching English in the Middle East.

It was a former professor who influenced American scholar Jon Kehrer to further his academic journey with the Department of Hebrew at the University of the Free State (UFS). And it was at the UFS where he recently graduated cum laude with a master’s degree in Hebrew, and was named recipient of the Dean’s Medal. 

Although he never expected to receive the Dean’s Medal, he is very glad – and somewhat relieved – that his dissertation made it through the examiners. “I never anticipated receiving this award. It makes me even more grateful for the strong Hebrew Department at UFS, and their rigorous standards for their students,” Kehrer says. 

“I wish I had been able to attend the graduation ceremony, but the circumstances of the semester just did not allow it.” Kehrer is currently teaching in the areas of the Old Testament and Biblical Languages at the Ozark Christian College (OCC) in Missouri, USA. In addition to his UFS qualifications Kehrer also holds a Bachelor of Theology qualification from the OCC. “I love the opportunity to invest in students and help them see new perspectives,” he says. 

UFS Hebrew a firm foundation for a solid academic career  

“I was looking for a high-quality and challenging programme that was flexible, especially since I work full-time and have a large family,” Kehrer says, as he recalls how he initially decided to become part of the UFS. He remembers fondly how Dr Kevin Chau, senior lecturer in Hebrew at the UFS, motivated and supported him when he first enrolled for the BA Honours programme. 

It is also a testament that the Department of Hebrew has made an impact internationally for the quality of its academic offerings. “Dr Chau helped me to think about how what I was learning would have an impact on my research and teaching in the future, and he was always quick to provide thorough and constructive feedback on my work,” Kehrer says.  

Once enrolled for the master’s programme it was initially difficult to know which direction to pursue and what topic to research, but the guidance and support of his two advisors, Prof Cynthia Miller-Naude and Prof Jacobus Naude, was “very helpful”.

“They never dictated what paths I should pursue, but they listened carefully and provided expert guidance to help me choose the path that would best suit my interests and the needs of the field,” he says. 

It was this support from the Department of Hebrew and its excellent reputation that came full circle when Kehrer was named Dean’s Medal recipient for achieving the highest marks of any student in a master’s qualification in the UFS Faculty of The Humanities. 

Dissertation a closer look at verbs in Biblical Hebrew 

His dissertation focused on Biblical Hebrew and how the object of a verb appears in various ways. “Sometimes an object appears by itself, but sometimes it can have a preposition or a two-consonant Biblical Hebrew particle along with it. Many Bible translations treat all these objects the same,” he says. “I wanted to try to understand why these variations occurred, so I looked at how different sentence elements might contribute to the variation. It was a fascinating study!” 
 
Kehrer believes it is important for university students to continue studying classical subjects like Hebrew. “I think we can all learn much from those who have gone before us, and so much wisdom and insight is connected to these ancient Biblical Hebrew texts, texts that would be inaccessible to us without translation,” he says. 

“I also think classical disciplines can help train students to think well and to read critically – essential skills for living in today’s ever-changing world.”  

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept