Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 May 2022 | Story Rulanzen Martin | Photo Supplied
Jon Kehrer
Jon Kehrer is a prolific academic and scholar. He also spent a few years teaching English in the Middle East.

It was a former professor who influenced American scholar Jon Kehrer to further his academic journey with the Department of Hebrew at the University of the Free State (UFS). And it was at the UFS where he recently graduated cum laude with a master’s degree in Hebrew, and was named recipient of the Dean’s Medal. 

Although he never expected to receive the Dean’s Medal, he is very glad – and somewhat relieved – that his dissertation made it through the examiners. “I never anticipated receiving this award. It makes me even more grateful for the strong Hebrew Department at UFS, and their rigorous standards for their students,” Kehrer says. 

“I wish I had been able to attend the graduation ceremony, but the circumstances of the semester just did not allow it.” Kehrer is currently teaching in the areas of the Old Testament and Biblical Languages at the Ozark Christian College (OCC) in Missouri, USA. In addition to his UFS qualifications Kehrer also holds a Bachelor of Theology qualification from the OCC. “I love the opportunity to invest in students and help them see new perspectives,” he says. 

UFS Hebrew a firm foundation for a solid academic career  

“I was looking for a high-quality and challenging programme that was flexible, especially since I work full-time and have a large family,” Kehrer says, as he recalls how he initially decided to become part of the UFS. He remembers fondly how Dr Kevin Chau, senior lecturer in Hebrew at the UFS, motivated and supported him when he first enrolled for the BA Honours programme. 

It is also a testament that the Department of Hebrew has made an impact internationally for the quality of its academic offerings. “Dr Chau helped me to think about how what I was learning would have an impact on my research and teaching in the future, and he was always quick to provide thorough and constructive feedback on my work,” Kehrer says.  

Once enrolled for the master’s programme it was initially difficult to know which direction to pursue and what topic to research, but the guidance and support of his two advisors, Prof Cynthia Miller-Naude and Prof Jacobus Naude, was “very helpful”.

“They never dictated what paths I should pursue, but they listened carefully and provided expert guidance to help me choose the path that would best suit my interests and the needs of the field,” he says. 

It was this support from the Department of Hebrew and its excellent reputation that came full circle when Kehrer was named Dean’s Medal recipient for achieving the highest marks of any student in a master’s qualification in the UFS Faculty of The Humanities. 

Dissertation a closer look at verbs in Biblical Hebrew 

His dissertation focused on Biblical Hebrew and how the object of a verb appears in various ways. “Sometimes an object appears by itself, but sometimes it can have a preposition or a two-consonant Biblical Hebrew particle along with it. Many Bible translations treat all these objects the same,” he says. “I wanted to try to understand why these variations occurred, so I looked at how different sentence elements might contribute to the variation. It was a fascinating study!” 
 
Kehrer believes it is important for university students to continue studying classical subjects like Hebrew. “I think we can all learn much from those who have gone before us, and so much wisdom and insight is connected to these ancient Biblical Hebrew texts, texts that would be inaccessible to us without translation,” he says. 

“I also think classical disciplines can help train students to think well and to read critically – essential skills for living in today’s ever-changing world.”  

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept