Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2022 | Story Rulanzen Martin | Photo Supplied
Dr Sello Thinane
Dr Jonas Thinane graduated with a PhD from the University of South Africa.

Dr Jonas Thinane, who recently obtained his PhD in Theology from the University of South Africa (Unisa), has been working in the Department of Hebrew since his first year as a Theology student; he is currently employed as departmental administrator in the department. 

It was his diligence and comments that convinced Prof Cynthia Miller-Naude to offer him employment as student assistant in the department.  His work involves overseeing the administration of three entwined units within the department.  “I am really proud of all that he has accomplished since then, seizing every opportunity available for learning and growing, without allowing obstacles to block his path,” said Prof Miller-Naude. 

His PhD focused on Human rights abuse by some self-styled spiritual leaders within the ‘Nyaope religion’ in South Africa and was supervised by Prof MS Kgatle from the Department of Christian Spirituality, Church History and Missiology at Unisa. 

An avid academic and researcher 

Apart from the research he undertook to complete his PhD in less than two years, he published nine accredited articles and a chapter in a book between 2021 and 2022. “I currently have six articles undergoing peer review and am working on more to publish in local and international journals this year,” says Dr Thinane. 

Dr Thinane’s research specialisation lies within Missiology, where he has introduced new knowledge to the subject matter through extensive writing on concepts of missio hominum (mission of human beings) in relation to the broader setting of the Missio Dei (Mission of God). “Beyond this, some of my published articles cover broad yet relevant topics such as COVID-19 and vaccine challenges in South Africa, the question of mandatory vaccination from a religious perspective, the ANC step-aside rule in conflict with Thuma Mina objectives, and many other topics relevant to our current challenges in South Africa,” Dr Thinane says. 

“I am sure that he will make a great contribution to academia for the benefit of society in the future,” says Prof Miller-Naude. 

Support and motivation from department 

Dr Thinane is very appreciative of the support he received from the department throughout his PhD journey. 
This is indeed a great achievement within the scope of the UFS’ encouragement for publication on subjects that greatly contribute to the cognition and advancement of our society.
Dr Thinane graduation
From the left: Dr KJ Padi (UFS Practical and Missional Theology), Dr A Motsei (UFS African Languages), Dr JS Thinane (Department of Hebrew),
Dr M Choane (UFS Political Studies and Governance), Prof MS Kgatle (UNISA Department of Christian Spirituality, Church History and Missiology),
Dr ME Maibi (UFS alumnus). (Photo: Supplied)

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept