Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2022 | Story Rulanzen Martin | Photo Supplied
Dr Sello Thinane
Dr Jonas Thinane graduated with a PhD from the University of South Africa.

Dr Jonas Thinane, who recently obtained his PhD in Theology from the University of South Africa (Unisa), has been working in the Department of Hebrew since his first year as a Theology student; he is currently employed as departmental administrator in the department. 

It was his diligence and comments that convinced Prof Cynthia Miller-Naude to offer him employment as student assistant in the department.  His work involves overseeing the administration of three entwined units within the department.  “I am really proud of all that he has accomplished since then, seizing every opportunity available for learning and growing, without allowing obstacles to block his path,” said Prof Miller-Naude. 

His PhD focused on Human rights abuse by some self-styled spiritual leaders within the ‘Nyaope religion’ in South Africa and was supervised by Prof MS Kgatle from the Department of Christian Spirituality, Church History and Missiology at Unisa. 

An avid academic and researcher 

Apart from the research he undertook to complete his PhD in less than two years, he published nine accredited articles and a chapter in a book between 2021 and 2022. “I currently have six articles undergoing peer review and am working on more to publish in local and international journals this year,” says Dr Thinane. 

Dr Thinane’s research specialisation lies within Missiology, where he has introduced new knowledge to the subject matter through extensive writing on concepts of missio hominum (mission of human beings) in relation to the broader setting of the Missio Dei (Mission of God). “Beyond this, some of my published articles cover broad yet relevant topics such as COVID-19 and vaccine challenges in South Africa, the question of mandatory vaccination from a religious perspective, the ANC step-aside rule in conflict with Thuma Mina objectives, and many other topics relevant to our current challenges in South Africa,” Dr Thinane says. 

“I am sure that he will make a great contribution to academia for the benefit of society in the future,” says Prof Miller-Naude. 

Support and motivation from department 

Dr Thinane is very appreciative of the support he received from the department throughout his PhD journey. 
This is indeed a great achievement within the scope of the UFS’ encouragement for publication on subjects that greatly contribute to the cognition and advancement of our society.
Dr Thinane graduation
From the left: Dr KJ Padi (UFS Practical and Missional Theology), Dr A Motsei (UFS African Languages), Dr JS Thinane (Department of Hebrew),
Dr M Choane (UFS Political Studies and Governance), Prof MS Kgatle (UNISA Department of Christian Spirituality, Church History and Missiology),
Dr ME Maibi (UFS alumnus). (Photo: Supplied)

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept