Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2022 | Story Rulanzen Martin | Photo Supplied
Dr Sello Thinane
Dr Jonas Thinane graduated with a PhD from the University of South Africa.

Dr Jonas Thinane, who recently obtained his PhD in Theology from the University of South Africa (Unisa), has been working in the Department of Hebrew since his first year as a Theology student; he is currently employed as departmental administrator in the department. 

It was his diligence and comments that convinced Prof Cynthia Miller-Naude to offer him employment as student assistant in the department.  His work involves overseeing the administration of three entwined units within the department.  “I am really proud of all that he has accomplished since then, seizing every opportunity available for learning and growing, without allowing obstacles to block his path,” said Prof Miller-Naude. 

His PhD focused on Human rights abuse by some self-styled spiritual leaders within the ‘Nyaope religion’ in South Africa and was supervised by Prof MS Kgatle from the Department of Christian Spirituality, Church History and Missiology at Unisa. 

An avid academic and researcher 

Apart from the research he undertook to complete his PhD in less than two years, he published nine accredited articles and a chapter in a book between 2021 and 2022. “I currently have six articles undergoing peer review and am working on more to publish in local and international journals this year,” says Dr Thinane. 

Dr Thinane’s research specialisation lies within Missiology, where he has introduced new knowledge to the subject matter through extensive writing on concepts of missio hominum (mission of human beings) in relation to the broader setting of the Missio Dei (Mission of God). “Beyond this, some of my published articles cover broad yet relevant topics such as COVID-19 and vaccine challenges in South Africa, the question of mandatory vaccination from a religious perspective, the ANC step-aside rule in conflict with Thuma Mina objectives, and many other topics relevant to our current challenges in South Africa,” Dr Thinane says. 

“I am sure that he will make a great contribution to academia for the benefit of society in the future,” says Prof Miller-Naude. 

Support and motivation from department 

Dr Thinane is very appreciative of the support he received from the department throughout his PhD journey. 
This is indeed a great achievement within the scope of the UFS’ encouragement for publication on subjects that greatly contribute to the cognition and advancement of our society.
Dr Thinane graduation
From the left: Dr KJ Padi (UFS Practical and Missional Theology), Dr A Motsei (UFS African Languages), Dr JS Thinane (Department of Hebrew),
Dr M Choane (UFS Political Studies and Governance), Prof MS Kgatle (UNISA Department of Christian Spirituality, Church History and Missiology),
Dr ME Maibi (UFS alumnus). (Photo: Supplied)

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept