Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 May 2022 | Story Rulanzen Martin | Photo Supplied
Dr Sello Thinane
Dr Jonas Thinane graduated with a PhD from the University of South Africa.

Dr Jonas Thinane, who recently obtained his PhD in Theology from the University of South Africa (Unisa), has been working in the Department of Hebrew since his first year as a Theology student; he is currently employed as departmental administrator in the department. 

It was his diligence and comments that convinced Prof Cynthia Miller-Naude to offer him employment as student assistant in the department.  His work involves overseeing the administration of three entwined units within the department.  “I am really proud of all that he has accomplished since then, seizing every opportunity available for learning and growing, without allowing obstacles to block his path,” said Prof Miller-Naude. 

His PhD focused on Human rights abuse by some self-styled spiritual leaders within the ‘Nyaope religion’ in South Africa and was supervised by Prof MS Kgatle from the Department of Christian Spirituality, Church History and Missiology at Unisa. 

An avid academic and researcher 

Apart from the research he undertook to complete his PhD in less than two years, he published nine accredited articles and a chapter in a book between 2021 and 2022. “I currently have six articles undergoing peer review and am working on more to publish in local and international journals this year,” says Dr Thinane. 

Dr Thinane’s research specialisation lies within Missiology, where he has introduced new knowledge to the subject matter through extensive writing on concepts of missio hominum (mission of human beings) in relation to the broader setting of the Missio Dei (Mission of God). “Beyond this, some of my published articles cover broad yet relevant topics such as COVID-19 and vaccine challenges in South Africa, the question of mandatory vaccination from a religious perspective, the ANC step-aside rule in conflict with Thuma Mina objectives, and many other topics relevant to our current challenges in South Africa,” Dr Thinane says. 

“I am sure that he will make a great contribution to academia for the benefit of society in the future,” says Prof Miller-Naude. 

Support and motivation from department 

Dr Thinane is very appreciative of the support he received from the department throughout his PhD journey. 
This is indeed a great achievement within the scope of the UFS’ encouragement for publication on subjects that greatly contribute to the cognition and advancement of our society.
Dr Thinane graduation
From the left: Dr KJ Padi (UFS Practical and Missional Theology), Dr A Motsei (UFS African Languages), Dr JS Thinane (Department of Hebrew),
Dr M Choane (UFS Political Studies and Governance), Prof MS Kgatle (UNISA Department of Christian Spirituality, Church History and Missiology),
Dr ME Maibi (UFS alumnus). (Photo: Supplied)

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept