Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Linus Franke delivered his inaugural lecture on the topic Contested Science for Sustainable Agriculture.

Conducting research on weed control for India at the Scottish Agricultural College in Scotland, studying soybean at the International Institute of Tropical Agriculture in Nigeria, and working with genetically modified crops at Agrosystems Research, Dienst Landbouwkundig Onderzoek (DLO) in Wageningen in the Netherlands, grain legumes in sub-Saharan Africa, and potatoes in South Africa. 

These are some of the agricultural practices that Prof Linus Franke, Academic Head of the Department of Soil, Crop and Climate Sciences at the University of the Free State (UFS), has seen and experienced in several countries, which contributed to his extensive knowledge on this matter.

More specifically, sustainable agriculture is his passion and the focus of his life’s work. In celebration of his academic career, this was also the topic of his inaugural lecture: Contested Science for Sustainable Agriculture, delivered on the Bloemfontein Campus on 4 May 2022.

With years of experience in the field, he reflected on sustainable agriculture, firstly stating that it would be good if we could have discussions on sustainable agriculture and the future of agriculture based on empirical evidence. “However, the reality is that ideology and a strong involvement of non-specialists is unavoidable,” he says.

Secondly, he adds, it would be a major improvement if we could move away from embracing universal principles for farming practices and forcing them into a local context. “It would be better if local contexts and aspirations could guide the way in which general production principles are applied.” Adding to that, he states the importance of measurements. “If you want to embrace the concept of sustainability, you must be able to measure it.” 

Solutions to environmental problems 

In his lecture, he took the audience back to years ago when he was doing his master’s research on organic farming systems, excited about organic agriculture as an approach that holds the promise of tackling major environmental problems in a radical manner. This bout of excitement about the prospects of organic agriculture was, however, short-lived. Fed up with the “dogmatic and anti-science attitude and the tribalism in the sector”, he saw his flirt with organic agriculture as youthful foolishness.

After spending years in India and Nigeria, Prof Franke produced reports on the sustainability and trade impacts of genetically modified crops. People in the organic and green movement, however, have expressed opposed views. “In their eyes, I was one of those short-sighted scientists unable to recognise the dangers of genetically modified (GM) crops.”
Investments in regenerative agriculture have become a means to reduce the pressure to invest in curbing greenhouse gas emissions from fossil fuel use elsewhere. – Prof Linus Franke

This made him wonder what drives these polarised discussions on GM crops and sustainable agriculture in general. “I learned that the strong and almost irrational position that the green movement has taken against GM crops and in favour of organic agriculture is merely a reflection of underlying emotions and preferences,” he says.

He explains two different lines of thinking about how to deal with the ecological challenges associated with agriculture, namely looking at nature to find solutions to environmental problems associated with agriculture, versus the idea that technology will come to our rescue. “The ecological problems we face in relation to agriculture are caused by modern farming technologies. Genetic modification is seen as an extension of the technologies that were responsible for the problems in the first place. To solve the problem, we need to look back at nature, learn from nature, and apply ecological principles to farming. You could argue that this view is rather unscientific and techno phobic. But believing that new technologies will come to recue us in the looming ecological crisis is equally based on a gut feeling, there are no guarantees that this will happen.”

Regenerative agriculture

Despite the strong position taken by the green movement in favour of organic agriculture, the organic movement became stagnant. “In Europe it represents only 5% of the total agricultural production and in South Africa it never really took off. GM crops have been relatively easily accepted here.”

GM crops and organic agriculture may not be major issues in South Africa, but regenerative agriculture has become a big topic and the discussion and dynamics around regenerative agriculture resemble those around organic agriculture.

Prof Linus Franke delivered his inaugural lecture on the topic Contested Science for Sustainable Agriculture. (Photo: Stephen Collett) 

"Over time, new approaches to agriculture have emerged, promising radical improvements in sustainability. Including conservation agriculture, holistic grazing, permaculture, and agro-forestry, these new approaches are grouped under the flag of regenerative farming and are attracting much attention. This has stimulated interest in using knowledge of ecological processes to improve agricultural production. 

“This is truly positive,” states Prof Franke. “It is great to see farmers in South Africa coming together and thinking about ways to apply some of these principles in their farming practices.”

Many of these approaches have proven their merits, but only under certain conditions. “Although many see regenerative farming approaches as globally applicable solutions to the big ecological challenges of today, it is important to take note of the context and the empirical evidence of the claimed benefits. Inspiration by nature does not necessarily lead to farming practices that are ecologically superior,” he says. 

Conservation agriculture, for instance, worked on large-scale mechanised crop farms in Australia and the Americas and it gained a firm foothold in the Western Cape. “But in Africa, including South Africa, conservation agriculture is widely promoted among smallholders, often with disappointing results,” he says.

Another challenge he addressed during his lecture, was that of expectations of regenerative agriculture being way beyond what farmers actually achieve. He found that large food corporations had announced major investments in regenerative agriculture, and by doing so, hoped to reduce their carbon footprint regarding production activities. The big issue here is that it is highly uncertain and questionable whether these improvements in carbon sequestration can be achieved. Prof Franke believes that for some companies, investments in regenerative agriculture have become a means to reduce the pressure to invest in curbing greenhouse gas emissions from fossil fuel use elsewhere.

Watch recording of the Inaugural Lecture below:




News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept