Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 May 2022
Robert Frater
The research efforts in the Department of Cardiothoracic Surgery in the Faculty of Health Sciences, UFS, have come a long way since the establishment of a homograft bank, animal research, and laboratory-based research on cardioplegia by Prof Hannes Meyer in the 1980s

Several world-class scientists and academics in the field of cardiovascular research will converge at the University of the Free State (UFS) on Thursday (5 May 2022) for a one-day hybrid conference to explore and celebrate the massive strides made in this critical field at the UFS Robert W M Frater Cardiovascular Research Centre.

The research efforts in the Department of Cardiothoracic Surgery in the Faculty of Health Sciences, UFS, have come a long way since the establishment of a homograft bank, animal research, and laboratory-based research on cardioplegia by Prof Hannes Meyer in the 1980s. Renewed interest in 2004 under the leadership of Prof Francis E Smit culminated in the establishment of the Robert W M Frater Cardiovascular Research Centre (the Frater Centre) in 2015. This was made possible through donor funding, especially by Dr Robert W M Frater MD PhD (honoris causa, UFS), a South Africa-born New York-based cardiothoracic surgeon, researcher and innovator as infrastructure and project support by the UFS.

The vision of the Frater Centre is to be a leading cardiovascular research institution in South Africa and sub-Saharan Africa. It provides an interdisciplinary training and research platform for scientists and clinicians from different backgrounds to develop as researchers and collaborators in cardiovascular and thoracic surgery and related domains. Activities are focused on the development of African solutions for African problems.

Three main divisions
The Frater Celebration day will highlight the achievements made thus far in a hybrid format in four sessions, which can be attended on a virtual platform or in person. The centre’s local and international collaborators will participate in the programme, and Dr Ronnie van der Merwe, the Group CEO of Mediclinic International, is the guest of honour.

The Frater Centre consists of three main divisions, all of which will form part of the focus of the conference programme in various forms during the day:

1) The Clinical Research Division addresses cardiovascular disease on a broad front, ranging from population and prevalence studies, healthcare solutions and clinical outcomes studies in a specific South African and African context.

2) The Research, Development and Commercialisation division is divided into Tissue Engineering and Cell Biology, Tissue Banking and Large Animal studies, and bioengineering to develop African solutions and technology within these domains.

3) The Simulation Programme provides an integrated interdisciplinary platform for the education and training of individuals and teams in cardiovascular, thoracic, anaesthetic, perfusion technology and related nursing fields in a state-of-the-art simulation unit. The research centre is developing a unique and leading programme and systems in this field. This endeavour is also developing IT models for training, evaluation and research.

The Frater Centre and 4IR
The Centre is firmly established in the fourth industrial revolution. It is new technology-driven, creating new IT platforms and boasts extensive interdisciplinary projects at the biomedical sector's local, national, and international levels.

It is essential to note that the extensive and successful collaboration within the Frater Centre not only exists on institutional level but also nationally and internationally. These collaborators assist, mentor, direct and contribute to the research activities.

Click: Link to the event
Event programme



News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept