Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2022 | Story Anthony Mthembu | Photo Edmund de Wet
House Ardour
Students of House Ardour along with other dignitaries cut the ribbon as they launch their new name.

The Health Sciences residence on the Bloemfontein Campus of the University of the Free State (UFS), commonly referred to as SHU 8, has been renamed House Ardour. The official launch of the residence name took place on Saturday, 7 May 2022 in the Callie Human Centre on the Bloemfontein Campus. “This is really a historic moment for us in Residence Affairs, Student Affairs, and I think for the university at large,” expressed the Assistant Director of Student Life at the UFS, Pulane Malefane. The launch takes place after two years of planning and discussions about an appropriate name for the residence. As such, the launch was well attended by some of the students living in the newly renamed residence, along with other dignitaries such as Prof Colin Chasi, Director of the Unit for Institutional Change and Social Justice, Quintin Koetaan, Senior Director of Housing and Residence Affairs, Prof Mpho Jama, Associate Professor in the Office of the Dean: Faculty of Health Sciences, and Nthabiseng Mokhethi who serves as Ardour’s Residence Head, among others.

Embracing a New Name

The name Ardour means to love, and to do something with great passion and enthusiasm. Malefane says the name is symbolic of the fact that many of the students in this residence will go out into the world and delineate those very values through their servitude. There has been a deep yearning from the student body for the renaming of the Health Sciences residence for quite some time. As such, the launch and celebration of this name is acknowledging the residence as part of the UFS community. “Names are important, names can carry deep personal, cultural, and historical connections, it also gives us a sense of who we are, the communities we belong to, and our places in the world,” Malefane highlighted during her speech in the Callie Human Centre.

The Importance of the Residence

Although this co-ed residence is not restricted to students within the Faculty of Health Sciences, the residence is a response to some of the problems that students in the faculty have been facing. “During recess when all the other students have to go home, some of our students still need to remain on campus or even come back earlier. This has created the need to say that we cannot allow our students to move between residences when they have such an academic workload that requires them to be in a space in which they don’t have to worry about where they are going to stay,” indicated Prof Jama. As such, the residence is also an essential way of ensuring that students from the Faculty of Health Sciences focus on developing academically as well as socially in the university space, without worrying about accommodation. 

Subsequent to a few remarks from the dignitaries at the Callie Human Centre, some of the guests descended to Ardour for the cutting of the ribbon. The ribbon was cut by Emily Chikobvu who serves as Ardour’s Prime, along with Quintin Koetaan, and Nthabiseng Mokhethi. “Moving forward, we do not want to hear the name Shoe 8 – that name is in the past – from now on we shall be referred to as House Ardour,” stated Vusimuzi Gqalane, Senior Assistant in the Unit for Institutional Change and Social Justice.


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept