Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 May 2022 | Story Anthony Mthembu | Photo Edmund de Wet
House Ardour
Students of House Ardour along with other dignitaries cut the ribbon as they launch their new name.

The Health Sciences residence on the Bloemfontein Campus of the University of the Free State (UFS), commonly referred to as SHU 8, has been renamed House Ardour. The official launch of the residence name took place on Saturday, 7 May 2022 in the Callie Human Centre on the Bloemfontein Campus. “This is really a historic moment for us in Residence Affairs, Student Affairs, and I think for the university at large,” expressed the Assistant Director of Student Life at the UFS, Pulane Malefane. The launch takes place after two years of planning and discussions about an appropriate name for the residence. As such, the launch was well attended by some of the students living in the newly renamed residence, along with other dignitaries such as Prof Colin Chasi, Director of the Unit for Institutional Change and Social Justice, Quintin Koetaan, Senior Director of Housing and Residence Affairs, Prof Mpho Jama, Associate Professor in the Office of the Dean: Faculty of Health Sciences, and Nthabiseng Mokhethi who serves as Ardour’s Residence Head, among others.

Embracing a New Name

The name Ardour means to love, and to do something with great passion and enthusiasm. Malefane says the name is symbolic of the fact that many of the students in this residence will go out into the world and delineate those very values through their servitude. There has been a deep yearning from the student body for the renaming of the Health Sciences residence for quite some time. As such, the launch and celebration of this name is acknowledging the residence as part of the UFS community. “Names are important, names can carry deep personal, cultural, and historical connections, it also gives us a sense of who we are, the communities we belong to, and our places in the world,” Malefane highlighted during her speech in the Callie Human Centre.

The Importance of the Residence

Although this co-ed residence is not restricted to students within the Faculty of Health Sciences, the residence is a response to some of the problems that students in the faculty have been facing. “During recess when all the other students have to go home, some of our students still need to remain on campus or even come back earlier. This has created the need to say that we cannot allow our students to move between residences when they have such an academic workload that requires them to be in a space in which they don’t have to worry about where they are going to stay,” indicated Prof Jama. As such, the residence is also an essential way of ensuring that students from the Faculty of Health Sciences focus on developing academically as well as socially in the university space, without worrying about accommodation. 

Subsequent to a few remarks from the dignitaries at the Callie Human Centre, some of the guests descended to Ardour for the cutting of the ribbon. The ribbon was cut by Emily Chikobvu who serves as Ardour’s Prime, along with Quintin Koetaan, and Nthabiseng Mokhethi. “Moving forward, we do not want to hear the name Shoe 8 – that name is in the past – from now on we shall be referred to as House Ardour,” stated Vusimuzi Gqalane, Senior Assistant in the Unit for Institutional Change and Social Justice.


News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept